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We review recent work on narrow resonance models. We take the point of view that such models play a role similar
to tha't of the Lee model in quantum field theory, and that they cannot therefore be directly compared with experiment.
Examples of various aspects of these models, including general self-consistency and the construction of amplitudes with
external currents are reviewed, and the related diseases are listed. A critical discussion of narrow resonance phenomenology
is given. Associated questions which seem to us suitable for further study are discussed and summarized.
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I. INTRODUCTION

tItkte present here a review of recent work. on crossing-
symmetric narrow resonance models. In the past year,
such models have been the subject of a burgeoning
amount of research and we hope that our exposition will
be an aid to those who want to acquaint themselves
with these developments. In our discussion of the
subject we have made no attempt to disguise our
personal prejudices, but have instead tried to articulate
them as clearly as possible.

It is our point of view that we are dealing here with
a model, such as the Lee model (Lee, 1954) in field
theory, rather than with a theory amenable to direct
experimental test. For this reason, while we accept
attempts to use clues gleaned from narrow resonance
models to generate phenomenological forms, we are
sharply critical of contentions that these constructions
also embody tests of fundamental principles.

In our title we have referred to the "narrow reso-
nance model. " Although the Veneziano model is the
best-known example of such a model, we want to
distinguish it from the general class of narrow resonance
models. By the Veneziano model (Veneziano, 1968) we
mean a representation of a scattering amplitude by a
sum over a small number of terms of the form

I'(m —n(s) )r(rt —n(t) )
I'(m+tt+P —n(s) —n(t) )

We believe that this distinction is useful since much of
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the work we discuss does not make use of that particular
functional form. The FP/P form is a simple example of
a crossing-symmetric, Regge-behaved, dual, narrow
resonance amplitude and, as such, can be used as a
touchstone to test broader theoretical speculation. It is
an interesting problem to determine under what
circumstances the Veneziano model and the general
narrow resonance model become equivalent.

We discuss the narrow resonance model within the
context of what we call the "nondynamical" assump-
tions of Lorentz invariance, crossing symmetry, proper
statistics, and consistency with the discrete symmetries.
Furthermore, we assume consistency with internal
symmetry, specifically isospin and/or SU(3). To a
large extent, our assumptions concerning internal
symmetries cannot be tested within the context of the
model. There exists as yet no reasonable argument
which either singles out a particular internal symmetry
or gives any insight into the mechanism by which
symmetries are broken.

Predictions outside the scope of narrow resonance
models are presumed to rely heavily on unitarity. At
the level of our present understanding, the division of
the properties of scattering amplitudes into categories
labelled "dynamic" and "nondynamic" is only semantic.
In this framework unitarity is generally assumed to be a
dynamic property which can be treated separately, and
many active research efforts involve attempts to
"unitarize the Veneziano model" in the belief that
unitarity can be invoked at some late stage to extrapolate
from the narrow resonance limit in a well-defined way.
Since the narrow resonance world is an artificially
elegant one whose dynamical properties are made
manifest by infinite strings of two-body resonances, it
lacks crucial features known to be present in the
physical world, and thus such a unitarization procedure
is bound to be difficult, if not impossible.

The plan of this paper is as follows: In Sec. II we
discuss the properties of the general crossing-symmetric
narrow resonance model (CNRM) for a four-body
amplitude. In Sec. III, we illustrate many of the points
touched on in Sec. II using the simple Veneziano model
for mm scattering. Readers unacquainted with this
general subject may prefer to read Sec. III first in order
to orient themselves. In Sec. IV we discuss alternative
narrow resonance models such as those suggested by
Virasoro and Mandelstam. In Sec. V we discuss PCAC
and, current algebra in connection with the CNRM. In
Sec. VI we touch on proposed schemes to avoid the
narrow resonance approximation while retaining the
other desirable properties of the Veneziano model. In
Sec. VII we discuss the generalization of the Veneziano
model to E-particle amplitudes, the problems of
factorization, and the use of the narrow resonance
amplitude as a Born term in a perturbation expansion.
In Sec. VIII we discuss high-energy diffraction, the
Pomeranchon, and duality in the general context of the
CNRM. In Sec. IX we discuss at tempts to form

Reggeized Feynman diagrams containing closed loops.
In Sec. X, we examine proposed phenomenological
forms arising from the CNRM. In the final section, we
summarize our remarks and list what we consider to be
interesting unanswered questions deserving further
at tention.

The cutoff date of our general literature survey was
15 July 1969, and we have used the SLAC listing of
preprints in particles and fields (PPF) to construct as
nearly a complete set of references as possible. We have
also tried to include more recent work which seemed to
us relevant, and in the process we have certainly missed
papers which may be of significance.

In our references we have used the following system.
Review articles, physics texts, mathematics texts, and
journal articles are compiled in four separate lists in the
bibliography. A few older articles are referenced in
footnotes. If there is a possibility of confusion, references
to review articles are marked (*). References to books
are marked with a dagger (f) . Mathematics and
physics texts are not distinguished in the text. Journal
articles not otherwise referenced in the text are listed at
the end of the section to which they are relevant. In the
bibliography, journal articles are cross referenced
with the section to which they are relevant.

II. GENERAL PROPERTIES OF NARROW
RESONANCE AMPLITUDES

In this section we discuss certain general features of
narrow resonance models for strong interaction scat-
tering amplitudes. The reader unacquainted w'ith the
subject may find it more convenient to first read Sec.
III, where a specific model for zx scattering is discussed
in detail.

In Table 2.1, we list a set of assumptions and proper-
ties which conveniently outlines the discussion to
follow. In this section we will touch on the narrow
resonance model's connection with internal symmetries,
finite energy sum rules (FESR), Regge behavior,
duality, and the interference model. The remaining
items in Table 2.1 will be dealt with in Sec. III.

A. Internal Symmetry

The first four "kinematic" assumptions listed in
Table 2.1:Lorentz invariance, consistency with crossing
symmetry, the discrete symmetries, and Bose and
Fermi statistics will be taken as given. ' The assumption
of consistency with internal symmetry necessitates
some brief remarks.

The procedure used in forming a narrow resonance
amplitude is first to choose a particular internal sym-
metry and associated representation or representations,
and then construct the most general set of kinematic
singularity fr'ee invariant amplitudes (Williams, 1963)

' Other viewpoints are possible. For example, see the remarks
of Chew in Jacob and Chew) (19'64), and in Chewt (1964).
Calling crossing symmetry kinematic is our semantic choice.
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or (alternatively) helicity amplitudes (Wang, 1966;
Fox, 1967; Jackson and Hite, 1967; Arbab and Jackson,
1968; Cohen-Tannoudji, Morel, and Navelet, 1968;
Mandula, 1968) consistent with these a,nd with the
other kinematic assumptions.

In general, there will be sets of solutions for each
choice of internal symmetry group and related repre-
sentations, as discussed in Sec. III for xw~m-~. The
model itself gives no clue regarding which symmetry
group or representation is to be preferred; neither does
it determine the number of particles and/or conserved
quantum numbers, nor the size and nature of the
breaking of the assumed internal symmetry. '

Said in another way, the narrow resonance scheme is
in some sense equivalent to an infinite set of linear
relations between pole residues. Through factorization,
the pole residues are bilinear in the coupling constants or
vertex functions. We have, therefore, an infinite set of
sum rules, and with the usual choice of linear Regge
trajectories, these determine the relative sizes of all
the coupling constants.

In order to make clear the limitations under which we
are working here, it is important to note that there are
three further important questions which cannot be
answered in the context of such systems:

(A) What is the absolute normalization of
amplitudes?

(8) How many prominent resonances are there?
(C) Given the nature of the narrow resonance

approximation (NRA) point, can one truncate the set
of sum rules and still derive approximately valid results?

In other words, in the context of narrow resonance
models, it is not possible to predict the strength of the
strong interactions, the energy at which amplitudes
become smooth, or to identify the set of resonances
which determines the properties of amplitudes at low
energies. The infinite set of narrow resonance sum rules
contains as a subset the relations considered by Gilman
and Harari (1968) and by Weinberg (1968) (see also
Cronstrom and Noga, 1970) to which the same limita-
tions apply. Under certain hypotheses about the
answers to (8) and (C) above, Weinberg (1968) has
pointed out that it is possible to derive I.ie algebraic
statements about the vertex functions involved. The
reader is referred to his paper, and that of Gilman and
Harari (1968), for further details. '

The question of the nature of the relations necessary
to answer (A) —(C), and to decide how a particular
internal symmetry and its breaking occur, deserves
further study. It has, for example, been hypothesized
by Chew (1970) that the nonlinear constraints of
multi-Regge unitarity will fix the number of mesons in
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FIG. 2. 'L. Plot of k' (k is the center of mass momentum) times
the difference of 7r p and 7r+p total cross sections, showing evi-
dence for approximate duality in finite energy sum rules. Curve
I is k' times a nonresonant background extracted from 7I-Ã phase
shift analyses. Curve II is the extrapolation of the contribu-
tion of the p Regge trajectory. Curves I and II essentially are the
integrand of the right-hand side of (2.2), while the oscillating
data gives the integrand on the left. This approximate equality,
in which the integrals, but not the integrands, match with the
resonance contributions oscillating about the Regge term, - is
sometimes referred to as "semilocal duality. " Figure taken from
Chiu and Stirling (1968).

an internal symmetry multiplet. [See Chew (1969)
for related remarks in this connection. $

B.The Narrow Resonance Approximation and Finite
Energy Sum Rules

In the narrow resonance approximation (NRA), we
consider scattering amplitudes in which the familiar
normal threshold branch points are absent and the
resonance poles thought to be present on the second
sheet of the physical amplitude occur on the real axis.

The possible dynamical importance of the NRA first
became evident with the construction of the finite
energy sum rule (FESR) bootstrap (Igi and Matsuda,
1967; I.ogunov, Soloviev, and Tavkhelidze, 1967;
Ademollo et al. , 1968; Dolen, Horn, and Schmid, 1968;
Mandelstam, 1968a; Schmid and Yellin, 1969) .

The FESR's provide a realization of the infinite set of
sum rules discussed above, and we review their formula-
tion here.

Provided an amplitude satisfies analyticity and
crossing, and is Regge behaved, its discontinuity in the
energy variable v=-,'(s—' I), at fixed t, D„(v, t), satisfies
the exact relation

+N +N
D„(v, t) v" dv= —

I background integral
2 N 2 —N

' This should be hedged slightly. See the remarks of Schmid
and Yellin (1969), Sec. III.' We would like to thank F. Gilman and S. Weinberg for very
helpful discussions regarding the points raised above.

+ P (Regge cuts), + P (Regge poles), I
v" dv. (2.1)

This exact expression can be greatly simplified if we
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TABLE 2.1 General properties of narrow resonance models.

Kinematic

Dynamic
Secondary input

and/or properties

I.orentz invariance
Crossing Symmetry
Bose statistics
Discrete symmetries
Internal symmetry

Narrow resonance approximation
1.. Regge behavior
2. Infinite number of poles
3. Atonous duality
4. No equivalent interference model
5. Even spacing of poles
6. Polynomial residues
7, Positivity of widths
8. Uniqueness
9. Wrong signature fixed poles in J

plane
10. Exponential behavior in exotic

directions
11. Nonexistence of partial wave dis-

persion relations
12. Equivalence to Veneziano model
13. Absence of exotic resonances
14. Exchange degeneracy

With these assumptions, the relation (2.1) is trun-
cated to read

+N p(() +a+bt+n+1

I D„(v, t) I„„,„.„v"dv= . (2.2)
2 ~

' a+bt+n+1
Equation (2.2) provides a consistency relation between
the parameters of the leading Regge trajectory and the
prominent resonances, and is likely to be valid only in
an average sense, as illustrated in Fig. 2.1 in which the
integrands of (2.2) are shown. The construction of the
FESR for ~+ir—+ir+co (Ademollo et a/. , 1968) led
Veneziano (1968) to the form he suggested for the
narrow resonance model, and (2.2) yields the set of sum
rules referred to above.

In the models we will discuss, (i), (iv), and (v) are
exact statements, and by a clever choice of 3 and E the
background integral (ii) can also be neglected. State-
ment (iii), on the other hand, does not hold in these
models since there are nonleading contributions on both

4 The arguments below are taken from Schmid and Yellin
(1969) and define the FESR in a rather strict sense which pre-
cludes the phenomenological applications of continuous moment
superconvergence relations considered for example by I.iu and
Okubo (1967), Olsson (1967), and Barger and Phillips (1968).
One of us (J.Y.) would like to thank K. Raman for emphasizing
this point in a private communication.

make the following rather strong assumptions4:

(i) P; (Regge cuts), =0;
(ii) background integral —0;
(iii) g; (Regge poles), —leading pole only;
(iv) Im n(t) —0 and Re a(t) =a+ bt;

(v) D„(v, 3) can be approximated by narrow
resonances.

sides of the FESR. In particular, the expression giving
the high-energy behavior of the amplitude in terms of
an infinite number of Regge pole terms is, in general,
only an asymptotic expansion and not a convergent
sum. Only for ei(t) = integer does the Regge series in the
model converge. In this case there are a finite number
of terms on the right-hand side of (2.1) .5

In the exact relation (2.1) there are necessarily
pieces which account for high-energy elastic diGraction
scattering. As we will see in Sec. III, such terms, usually
lumped together and called the Pomeranchon, cannot
readily be accommodated in a narrow resonance model
Lsee Wong (1969a) for an opposing view). This dove-
tails nicely with the hypothesis of Freund (1968a) and
Harari (1968), who equate the contributions of the
Pomeranchon trajectory to the right-hand side of
(2.1) to nonresonant background on the left. Since
narrow resonance amplitudes have no background, the
truncated FESR (2.2) are popularly supposed to hold
only for those amplitudes which do not couple strongly
to the Pomeranchon. This assumption has not been
well explained, and at present it has only a rather
striking empirical significance (Gilman, Harari, and
Zarmi, 1968; Harari, 1969).

Clearly, there is an as yet unknown relation between
the mysterious nature of the Pomeranchon, and the
answers to (A) —(C) above. In fact, it is a reasonable
guess that the Pomeranchon is associated with the
existence of the infinity of inelastic channels, and that
it therefore is an essential aspect of unitarity, which
is conspicuously omit ted from the list of assump-
tions in Table 2.1. Narrow resonances on the real axes
of the Mandelstam variables violate unitarity. We
therefore are not investigating a complete theory, but a
model with a serious Raw. One can, for example, com-
pare the formulation of the narrow resonance model
with that of the E/D model (Chew and Mandelstam,
1960), which preserves elastic unitarity but violates
crossing.

In the authors opinion, the unitarity violation of the
narrow resonance model totally precludes any practical
applications whatsoever. This view is not generally

p(g) so tt)
Mescal Sheet

lfnphysical Sheet

X X X X X

FIG. 2.2. Analytic structure of an amplitude with physical
cuts vs a narrow resonance amplitude. The physical amplitude
is power bounded on the physical sheet, while the narrow reso-
nance amplitude has no sheet structure and has unbounded
asymptotic behavior along the line of poles, unless one goes a
finite angle into the complex plane.

' In general, there will be an infinite number of terms on the
right-hand side of (2.2), However, at n(t) =integer, the gamma
functions which appear in p(t), in the model, ensure that only a
finite number of Regge trajectories contribute.
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subscribed to. For example, it has been hypothesized by
Chew (1969) that limitations on narrow resonance
models due to unitarity violation can be avoided by
using exterior physical inputs derived from other
models. We will return repeatedly to the question of the
realistic interpretation of narrow resonance models
below.

lirn A(s, t) =P(t)s &'&

!
s ~no, t fixed

(2.3)

uniformly in the entire complex s-plane except in a
direction along the line of poles on the real s axis. The
elimination of this one direction in the complex s-plane
from the restriction of Regge asymptotic behavior
(Veneziano, 1968) seems to us a reasonable restriction
in view of the absence in the model of normal threshoM
branch cuts. Fig. 2.2 illustrates the asymptotic behavior
on the physical sheet of the s-plane for an amplitude
with physical cuts, and for a narrow resonance amplitude.
In this picture a wedge around the real axis in the
narrow resonance model can be viewed as mimicking
the properties of a second, nonphysical sheet in the
more realistic amplitude. The physical region of the
narrow resonance amplitude can be viewed as the area
above the upper boundary of this wedge, just as the

C. Regge Behavior

We now turn to the secondary inputs and/or proper-
ties listed in Table I.' We will insist that the narrow
resonance model has Regge asymptotic behavior, by
which we mean that the amplitudes behave like

physical region of an amplitude with cuts is taken as
the area above the boundary of the cut.

As for property 2 in Table 2.1, the mathematically
oriented reader may have already observed that the
asymptotic behavior (2.3) in the absence of cuts
already requires that we consider amplitudes with an
infinite number of poles. If we write an amplitude with
a finite number of poles in the form

A(s, f) = Q +E(s, t),
~ c (t)

a=0 ~—~A,

(2 4)

—+ 0(1/s)
~ ck(t)

a=o ~—~1 ~ ~
(2.5)

in the asymptotic region. Picard's second theorem on
essential singularities (Titchmarsh, 1939, Sec. 8.8)
guarantees that no entire function except a polynomial
has uniform power behavior, so E(s, t) cannot exhibit
Regge behavior by itself. Also, there cannot be can-
cellations between E(s, f) and a finite number of pole
terms to produce the asymptotic form (2.5) .

In order to have an infinite number of poles without
an accumulation point in the finite plane, we must have

(2.6)

and the assumed identification of the location of the
poles in the amplitude with positive integral values of
the s-channel Regge trajectory,

where E(s, t) is entire in s and ci,(t) is a polynomial in
t, then the finite sum in (2.4) will have fixed power
behavior

n(si) = k, (2.7)

means we have infinitely rising Regge trajectories
(Mandelstam, 1968a) . Consistency with current experi-
mental (cf. Fig. 2.3) suggests we should consider linear
Regge trajectories7

a(s) =u+bs. (2.8)

D. Duality

I I I

2 3 4 5
(Moss} in (GeV)

6 7

' We have hedged the title of the list because several different,
but almost equivalent, sets of assumptions are in general use.
This will be discussed further in Secs. II.E and III.N.

FIG. 2.3. Chew —Frautschi plot showing states lying on the
degenerate p, f trajectory used in the Veneziano model. The
parameters of the resonances in the 5, T, and U regions are highly
speculative.

We would like to discuss the subject of "duality" in
terms of an amplitude with poles in two channels,
s and $, which is symmetric under t+-+s. The term
"duality" was first invented by Chew and Pignotti
(1968) to describe the observation of Dolen, Horn, and
Schmid (1968) that there exist intermediate energies
where some FESR's can be saturated on the left-hand
side by a few .dominant resonances, and on the right-
hand side by the leading Regge trajectory, as discussed
above. Controversy has arisen regarding the definition
and applicability of "dual" and "interference" models
(Barger and Durand, 1968) . Most of the controversy is
due to the ambiguities involved in dividing an amplitude

7 It is not clear that nonlinear Regge trajectories should be
excluded. See Capra (1969) and Coon (1969).
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/+ / Feynman fieId theory

/ Dua I theory
Diverges

FIG. 2.4. Comparison between Lagrangian Geld theory and
dual tree diagram model. In the Beld theory, diagrams containing
poles in overlapping channels are added. In a dual theory the sum
over poles in one channel diverges to produce poles in over-
lapping channels; if sums from both channels are added, double
counting occurs.

with cuts into "resonances" and "background" and the
related difficulties in measuring resonance parameters
from Argand diagrams (Jackson, " 1970). For the
details of the arguments, the reader can consult
Allesandrini, Amati, and Squires (1968); Chiu and
Stirling (1968); Durand (1968); Collins, Ross, and
Squires (1969); Donnachie and Kirsopp (1969);
Jengo (1969);Schmid (1969a) .

Since NRA amplitudes, by definition, contain no
background, the situation is much clearer and we can
better understand the nature of duality. First, we
distinguish between two possibilities. Suppose we write

A(s, t) = g + P +E(s, t), (2.9)
" ck(t) " ck(s)

k=pS (k k=o t fk-
where the sum over s(t) poles converges for all t(s),
where the $k are a positive set of constants, ordered
rnonotonically in k, and where the cA, are polynomials.
E(s, t) is a symmetric function entire in both s and t.
Equation (2.9) is the narrow resonance form of the
interference model, where t-channel poles and s-channel
poles are added separately as would be the case in a
Feynman field theory' (see Fig. 2.4) .

This contrasts with what we will call "atonous"
duality' (Sivers and Yellin, 1969b), where

A (s, t) = Q
" gk(s)

(2.10a)
k—P t $k—(for s($p)

and also

A(, , t)= P""
k=O S—5k

(for t(]o) (2.10b)

and there is no arbitrary entire function. The sum over.
t-channel poles diverges for t&~tp to give the s-channel
poles and vice versa.

' In this connection see Abarbanel (1970), who attempts to
write down a dual Lagrangian Geld theory incorporating the
analyticproperties of Eqs. (2.10) below. It seems to beimpossible
to formulate such a theory without introducing nonlocal interac-
tions, unless one is v illing to accept the manifold diiYiculties to
be discussed in Secs. VII and IX.' This particular terminology was suggested to one of us (J.Y.)
by Professor Y. Ne'eman. Compare the expressions (3.18) and
(3.19) with those of Durand (1968). The ingredient which is
absent in older treatments is the atonous duality statement that
everything is determined in the narrow resonance limit if one
knows the location of poles and their residues. This implies that
the divergence of the series of cross-channel poles generates
direct-channel poles, and vice versa.

The crucial point here is that the interference model
form of A (s, t), (2.9), is not possible if we demand that
the sum over t-channel poles, which is assumed to be
entire in s, also have Regge asymptotic behavior in s,
as ir' (2.3). This follows, as discussed before, from
Picard's theorem. Even if we exclude a wedge,

~

arg s
~

&~ 5, from the requirement of Regge asymp-
totic behavior, the limitation of the sum over t-channel
poles to be an entire function in s of finite order and
type prohibits the interference model form (Oehme,
1969a).

Clearly the only possibility is that neither of the
two sums in (2.9) have Regge behavior in s, but that
they separately have some sort of complicated behavior
which cancels to produce Regge behavior. This is
precisely what happens in an atonous dual amplitude.
In order to decouple the channels and create a genuine
interference model, it is necessary to go beyond narrow
resonances and introduce cuts (Jengo, 1969) .

%e will illustrate the cancellation mechanism involved
by considering the Beta function, 8(—a(s), —n(N) )—=

8( x, —y).—We will split up 8(—x, —y) just as do
Lichtenberg, Newton, and Predazzi (1969), whose
interpretation of the results is diametrically opposed
to ours. We have

dun * '(1—u) " '

0

dun * '(1—u) p '

+ due * '(1—u) " ' (2.11)

=Bi,(—*, —y)+Bi i, ( —y, —*) (2.12)

(2.14)

where E(x, y; X) is entire in x and the sum converges

= (—X */x) pFi( —x, 1+y; 1—x; & )

+p—(1—X)-pjy]2Fi( —y, 1+x; 1—y; 1—X), (2.13)

where Bk(p, q) is the incomplete Beta function and
~F~ is Gauss s hypergeometric function. The integral in
(2.11) has end-point singularities at 0 and 1 which
account for the x and y poles; the x poles are associated
with u=0, theypoles withu=1. Therefore 8&, (—x, —y)
contains x poles and is entire in y, while Bi k( —y, —x)
contains y poles and is entire in x.

Now, restricting ourselves so that the complex
parameter A&0 or 1, we see that diGerent choices of )
amount to changing Bk(—x, —y) and Bi i, (—y, —x)
by entire functions.

Writing out the partial fraction expansion of B)„
we have

r(A+1+y)
Bk(—x, —y)=y ' Z- +E(x, y; X),

k=o 1Vt(1V—x) r (y)
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I-y
( I -c)

lxCd &

~g fix%.h g

( I-c)x
e (I—
X

-y) [-xj"

0 (FT~

Fzo. 2.5. Asymptotic behavior of B1,( —y, —x), where Rec) 1.
The function has Regge behavior as Rex~+ ~, but blows up
exponentially as Re x~—~. (The acronym FTAP means
"faster than any power. ")

for y(0. The sum diverges for positive y to produce
poles which are cancelled by similar poles in E'(x, y; ) )
since Bx(—x, —y) is entire in y. We therefore have a
whole spectrum of functions 8&, (—x, —y), for different
values of 3, which have the same partial fraction
expansion in terms of poles in s. Only one of these
functions, for X=1, is atonous dual by our definition
and Eq. (2.10a), in that there is no extra entire func-
tion. The atonous dual function is the Beta function
itself, Bi(—x, —y), which contains cross channel poles
which appear as divergences in its partial fraction
expansions.

As
~ y ~

—x~ withx fixed (or vice versa), Bx( x, ——y)
has Regge behavior in half the complex y plane. Which
half it is depends on whether

~
X

~

is greater than or
less than 1. The behavior of Bx(

—x, —y) and
Bi x (—y, —x) for asymptotic values of their arguments
is shown in Figs. 2.5 and 2.6. As can be seen there, for
one of the directions y

—+& ~, x fixed, Bx( x, —y)—has
Regge behavior, while Bi x( —y, —x) has Regge
behavior for one of the directions x—+& ~, y fixed.

In other words, the x poles in Bx( x, —y) —lead to
Regge behavior in half the y plane, while the y poles in
Bi x( —y, —x) lead to Regge behavior in ha, lf the
x plane. In the non-Regge half-planes, the two functions
blow up exponentially. In order to get Regge behavior
for both directions x—+&~, y fixed, we need to sum the
two functions and go back to 8( x, —y). T—he two
incomplete Beta functions interfere in such a way that
the sum is Regge-behaved, except of course along the
lines of poles, as discussed in Sec. II.C.

-x Cye

(FTAP)

FIG. 2.6. Asymptotic behavior of B,( —x, —y) where Rec&1.
The function has Regge behavior as Rey —+—~ but blows up
exponentially as Re y~+ ~. Note also the exponential behavior
as Rex—+ —~, which cancels out a similar exponential increase in
B1,( —y, —x) (cf. Fig. 2.5), so that the sum is Regge behaved
in this region.

Lichtenberg et al. (1969) and Coulter, Ma, and
Shaw (1969) identify the two pieces in (2.12) with the
interference model breakup. We do not believe that a
detailed cancellation of the type outlined above,
between two terms, neither of which is acceptable as a
physical amplitude due to the exponential blow up, is
in the spirit of the original interference model (Barger
and Cline, 1966; Barger and Cline, 1967; Barger and
Durand, 1968), which depends on splitting the ampli-
tude up into two terms in such a way that Regge
behavior in x(y) is associated with the y(x) poles only.

For one of the directions x~& ~, y fixed, Regge
behavior in x cannot be decoupled from the x poles in
the narrow resonance model. In order to decouple
Regge behavior from the direct channel poles, it is
necessary to violate the narrow resonance approxi-
mation and introduce cuts. This is precisely what is
done by Jengo (1969) in order to construct wha, t he
calls a generalized interference model.

The definition of atonous dual functions is not, of
course, limited to crossing symmetric functions of two
independent variables. Partial fraction expansions are
the narrow resonance formulation of dispersion rela-
tions, and the absence of entire functions is equivalent
to the absence of undetermined subtraction constants.

Any function with poles in two independent variables
which is determined entirely by its partial fraction
expansion in one variable is atonous dual.

As we will see in Secs. VII and IX, the concept of
atonous duality can be readily generalized to N-variable
functions having the singularities of Feynman trees,
and to functions having the singularities of one Feyn-
man loop. It is a characteristic common to all these
prescriptions that the divergence of the expression in
terms of one set of poles generates another set of poles.
This is indicated schematically in Figs. 2.4 and .7.

Atonous duality, as stated, is a dynamical property
!
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Y
Z ~ g ~ Diverges

I

I

/

Diverges (b)

FIG. 2.7. Schematic sketch showing atonous duality as con-
tained in the amplitudes discussed in Secs. VII and IX. The sum
over poles in one invariant diverges to produce a pole in a crossed
channel.

in that it places restrictions on the form which the
residues of resonance poles can take. Not all functions of
the form I'(p —x)F(q —y)/I" (m x y—) h—ave atonous
duality. When m(p+q —1, we can write

F (p —x) F (q —y) F (p+q —x—y)
&(p *, q

—y)—
r(~—x—y) r(~ x y—)—

= (n x y—) ~ —~ ~ (p+q —1—x—y)
I' (k —p+ 1+x)

q k —
y

' 215
g=o I'(k+1) I'( —+1+x)

which, in terms of the analogy between partial fraction
sums and dispersion relations, can be viewed as a
partial fraction sum with subtractions.

By beginning the poles in a gamma function form at
very high energies —for example we may take
I'(100—x) r (100—y) /I'(100 —x—y) —it is easy to
demonstrate that subtractions strongly affect the
validity of an FESR like (2.2), for any reasonable
choice of E.

F(x, y) F(—x) P (—y)*— a&(x); (2.16)
yahoo, fized X %=0

(iii) The coefficients air(x) in (2.16) are entire in x.
As x~lV, an integer, ax(A") =0 for E&A'+1 so that

ax(x) = [F(E—x)/F( —x)]bx(x); (2.17)

E. The General Narrow Resonance Amplitude and
Its Equivalence to a Sum over Veneziano Terms

We would like to comment on a very interesting
discussion by Khuri (1969) regarding the construction
of an absolutely convergent series of Veneziano terms.
Specifically, Khuri considers a function of two variables,
F (x, y), and assumes the following:

(i) F(x, y) is symmetric and meromorphic, with
poles aty, x=0, 1, 2 ~ ~ ~,.

(ii) I" (x, y) has the (Regge) asymptotic expansion

) bo(x) (
(m2i*i, (2 21)

where M is some fixed number.
In order to have positive partial widths, we also

need a bound on the behavior of bx(x) for increasing
E. This remains as an unsolved but interesting mathe-
matical problem. Khuri has reduced this problem to a
study of the solution to a certain finite difference
equation. The reader is referred to his paper for details.

Matsuda (1969a) has attacked this problem from a
slightly different angle. He makes the usual kinematic
assumptions, assumes narrow resonances, puts in
linear trajectories and the absence of exotics, and he
also excludes cuts and right-signature fixed poles in the
J-plane. Positivity is not included. He then shows that
P(x, y) can be expressed as a convergent series in
Veneziano terms. However, it is not necessarily true
that the resulting sum Reggeizes properly.

Matsuda. (1969b) has also given an illustrative
example in this connection. He takes

s(x, y; X) = [I'(1—x) F(1—y)/I'(1 —x—y) 7

X,F,[—x, —y; —,(1—x—y); X], (2.22)

(v) There exist conditions on the growth of bx(x) in
s and E sufhcient to guarantee that the series

, r(E—x) r(E —y)17(x y) —= Z Z ~x (2.19)
x=o J=o r(E+J x y—)—

converges uniformly for some domain of x and is equal
to Ii (x, y) there.

The reader will notice the connection between
Khuri's assumptions and properties 1, 2, 5, and 6 in
Table 2.I. Positivity of partial widths, property number
7, is inserted by conditions on the Regge residues,
P&(s), which are related to the bx by the rather for-
midable relation

~-(~) [2~.(~)+17(—1)"
bx x =-',

,=o =o (4q') n„(s) cos s-e„(s)

r[—a„(s)+j] (4qo)i ~
( a,)x—~

X gj—n

F[—2o.„(s)+j+e](j —e)! I'(E j+—1)
'

(2.20)

where z= a+bs, and n (s) =x m,. The impo—rtant point
to notice about (2.20) is that it involves an alternating
series so that the positivity condition is not easily
implemented.

Khuri a, ttacks the following problem: Given ax(x) a,s
in (2.17), construct F(x, y) as a sum of the form
(2.19) . He has been able to find bounds on the growth
of bx(x) in (2.17) in order that the sum converge
uniformly in x. In fact, for bo(x) the requirement is

which reduces to

I'(1—x) I'(1—y)/I" (1—x—y), for X=O.

For 0(X& i, &lIatsuda's example satisfies Khuri's
requirements. It also has an exponential decrease in

(iv) As x—+X, an integer, the residue of the pole in
F(x, y) can be calculated from (2.16) and is

( 1)N+1 iv

Z ~x(&) ( y)" x(2»)—-
F(1+1V) x=o
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(x—y) for fixed (x+y) /if z=ce(s) and y=cx(u), this
would be fixed tj, related to the absence of exotic states,
and its leading trajectory has positive widths. However,
as we shall discuss further in Sec. III.N, there are good
reasons for believing that (2.22) has an infinite number
of negative widths on nonleading trajectories.

The positivity requirement is the crux of the problem.
It can be argued, for example, Sivers and Yellin, 1969b,
that positivity along w'ith the other requirements of
Matsuda (1969a) seems to force the Regge residues to
blow up exponentially, violating the fixed J bound of
Jones and Teplitz (1967) .'"

Additional material relevant to this section can be
found in Bitar (1969b), Childers (1969), Jacob and
Mandelbrojt (1969), Jacobs (1969), Joshi and
Pa, gnamenta (1969), Oehme (1969b), Phillips and
Ringland (1969), Swift and Tucker (1969), and Wong
(1969b).

III. THE NARROW RESONANCE MODEL
FOR pre SCATTERING

Pa P, c

FIG. 3.1. The scattering process, m m&~m, ~rf.

tering. This particular reaction has been studied exten-
sively from many points of view —for example, using
X/D and current algebra. There are, on the other hand,
indications (Mandelstam, 1968a; Schmid, 1968) that
the m.x interaction may be roughly described by a
narrow resonance scheme.

In order to illustrate the main features of the narrow
resonance world discussed in Sec. II, we would like to
study in some detail a model of this type for mw scat-

"We emphasize that the arguments of Sivers and Yellin
(1969b) lack the rigor of those of Khuri and Matsuda. The Regge
residues for a specific mx model will be computed in Sec. III.J.
There it will be shown that the leading Regge residue has a form
which yields the asymptotic behavior

pelt) ~ (1(4m.) e"'(4/e) ~'~~ exp L
—ult) jn(4/e) ].

As t goes to ~ along a wedge near the negative real axis, the
residue has an exponential increase. Since p0(t) is an analytic
function of t, and has an infinite string of zeros at n= —(3/2),—(5/2) ~ ~ ~, Carlson's theorem tells us this exponential increase
must occur, as pointed out by Jones and Teplitz (1967). Jones
and Teplitz further remark that in a theory with infinitely rising
trajectories at least one of the following set of assumptions, con-
sidered in a related context by Khuri (1967), must fail:

(i) the amplitude A (s, t) is analytic in the cut s plane and is
bounded for fixed t by

f (s) =c exp (( s ~l ');
(ii) A (s, s) is bounded by f(s) for fixed z;
(iii) the Sommerfeld —Watson transformation of the partial-

wave amplitudes a( J, s) exists, and a( J, s) is bounded by f(s)
for fixed J;

(iv) a(s) and P(s) are analytic with a single cut from s=4p, '
to ~, n(s) is polynomial bounded, and P(s) is bounded by f(s).

In the model, (i) and (iv) are satisfied hy construction, but
the fixed z and fixed J bounds in (ii) and (iii), and the P (s) bound
in (iv) fail. (The amplitudes blow up exponentially for fixed s
in the unphysical region. ) The bad asymptotic behavior of the
partial v ave amplitudes a( J, s), in s, expresses the fact that the
background integral, in the model, grows exponentially for large
s and dominates the Regge series if one pushes the usual Sommer-
feld —Watson contour to the left of J=—1/2. The presence or
absence of satellite poles has led to considerable confusion in
the literature. For example, Chu et al. (1968) attempted to gen-
erate a crossing symmetric model with only one leading trajectory.
A.s was shown by Dolen, Horn, and Schmid (1968), and somewhat
more rigorously by Mandula and Slansky (1968), this makes no
sense, at least in a dual model. Mandula and Slansky went on to
attempt to prove that even with an infinite family of parallel
trajectories, a dual crossing symmetric model could not exist.
As shown by Goebel (1968) and by explicit construction by
Veneziano .(1968), such a model does, in fact, exist.

s= (P,+Pe)',
t= (P. P)—
"= (P. Pd) .

(3.2a)

(3.2b)

(3.2c)

Unless otherwise stated, in the rest of this section we
will set m. '=0 so that s+t+u=0.

We will find it convenient to work with the t-channel
isospin amplitudes

Ae' ——3B(s, t, u)+A(s, t, u)+C(s, t, u), (3.3a)

Ai =A($, t) u) C(s, t, u),
Ag' ——A. (s, t, u)+C(s, t, u).

(3.3b)

(3.3c)

Because of the constraints of crossing, the invariant
amplitudes in (3.1) have the symmetry

A (s, t, u) = A (s, u, t) =B(t, s, u) = C(u, t, s), (3.4)

so that specification of any one of A, 8, or C determines
the amplitude completely. Comparing (3.3) and (3.4),
we see that we can also determine the amplitude com-
pletely by specifying either Ao' or A2'. In this section we
will work with the amplitude A2' as our basic function.

A. Kinematic Requirements

The scattering process m, x~—+m;md is illustrated in
Fig. 3.1. The constraints of Lorentz invariance, crossing
symmetry, Bose statistics, and isospin invariance can
be satished by writing the amplitude in the form
(Chew and Mandelstam, 1960)

Me,e.(s, t, u) = A (s, t, u) 6.e5,&

+B(s, t, u) 6,5ed+C(s, t, u) 8,drab„(3. 1)

where the subscripts on the Kronecker deltas stand for
the charge states of the pion and the Mandelstam
variables (s, t, u) have their conventional definition in
terms of the four-momenta
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B. Eigenfunctions of the Crossing Operator

Define

(3.5)

and similarly for the s and I channels. From the
remarks of Sec. III.A, there exists a crossing operator,
0, where

X'= OX' (3.6)

The operator 0 is composed of a numerical matrix and
an operator which switches s- and t-channel four-
momenta. The numerical matrix is (Chew, 1961)

where the rows and columns refer to the isospins in
each channel. If we choose a function, F(s, u), as a
trial function for the amplitude A&', then, by the
remarks in Sec. III.A,

which corresponds to IS. These remarks can, of
course, be easily extended to SU(3). For example,
(3.8) corresponds to 8/31, while (3.10) corresponds to
2'761 in SU(3). The solution (3.10) is inconsistent
with the classification of the experimentally observed
low-mass resonances which communicate with the mvr

channel (Rosenfeld, et a/. ,
* 1969). However, if we have

a solution with internal resonances appropriate to a
nonet scheme, we can always add a function of the form
(3.10) in order to incorporate high-mass, nonleading
exotic resonances.

C. The Choice of A2t(s, u)

We will choose a basic function F(x, y) =A2'(s, I)
(x=o+bs and y=a+bu) which has the following
properties:

(a) Itis symmetric, F(x, y) =F(y, x), and meromor-
phic with simple poles at x = 1, 2, ~ ~ ~ and y= 1, 2, ~ ~ ~ .

(b) It has Regge asymptotic behavior:

lim F(x, y) r (1—y)
x~ —oo, fixed y

(c) The residue of the pole at x= E, G(E, y), is a
polynomial in y of order E.

(d) The residue G(E, y) has positive Legendre
coeKcients

(3.8)
+I

PL,
2 —]

G(E, a+bu) Pz(z) dz&0, (3.12)

F(t, I) —F(t, s) (3 9)

P(t, )+tt(ts) tt),
Choosing F(s, I) so that it has no poles in the

physical t region, these two different eigenfunctions of
the crossing operator have, as might be expected,
different SU(2) properties. The eigenvector (3.8) has
an SU(2) structure 3l while, by adding (3.8) and
(3.9), we get a solution with no isospin 1 internal
states:

is an eigenfunction of the crossing operator 6 if
F(s, u) =F(N, s).

If we insist our isospin amplitudes are linear com-
binations of a particular symmetric function F(x, y),
in general 8 is such that there will be two linearly
independent eigenfunctions with eigenvalue 1. One
possible choice is (3.8). Another linearly independent
choice is F (s, t) =- A (s, t, u), which yields, using (3.3)
and (3.4), the eigenfunction

where z = 1+2u/(E —a) .
(e) F(x, y) has no poles in the physical t channel.

Our choice for F (x, y) is

(3.13)

We conjecture (3.13) is unique under the imposition
of conditions (a) —(e) plus an additional assumption:

(f) For m =0 and a= 2 the amplitude is zero along
1—x —y= 1—2a+bt=bt=0.

The general functional form I'I'/I' was first suggested
by Veneziano (1968), and the application to ~~~irir is
due to Shapiro and Yellin (1970) and Lovelace (1968).
I ovelace first suggested the connection of a=~ with
the PCAC-current algebra zero, condition (f). We will
return to the question of uniqueness in Sec. III.N.

D. Asymptotic Behavior

The asymptotic behavior of F0(x, y) is shown in Fig.
3.2. To compute the behavior in directions which cross
poles, we need an averaging procedure. Consider, for
example,

X"'= [F(s, t)+F(s, u)+F(t, u) i 0 (3 10) lim I (1—x) I (1—y) /I'(1 —x—y)
jx)~co, fixed y

I (1—y) (—*)"+OL(—*) '$. (3.14)
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This result arises from the well-known asymptotic
expansion (Tricomi and Erdelyi, 1951)

I'(s+a) —ZC-(~, P)s ' ", (315)
p (&+p) (z~~w a=0

where

Cp(cx, P) =1,
Ci(o', P) = 2(n —P) (n+P —1),

———Zeros
Poles

=== Base lines

+y=l t =0

+y=2 t=- l

++= 3
+y=4

t=-2
t =-3

—( —1) + (~—P)P"" C (~ P) (316) y=& t=-4

However, (3.15) is not valid if we travel along the
negative real axis. The argument of x must satisfy

~
argx

~
&~—5 (8)0) in order to avoid the violent

oscillations due to the line of poles. "
Taking t=1—x—

y and v=2(x —y), we see that for
t fixed and large

~
v

~

I'(-,'+-,'t+ v) I'(-,'+-', t—v) 7i P

I' (1) ~p)~~ F ( t) cos 'irv

(3.17)

which goes to zero faster than any power so long as we
avoid the poles in cos mv by taking the asymptotic
behavior along a line a finite angle away from the real
axis. Using this result, we can see that the isospin
amplitudes, (3.8), Reggeize along one of the axes of the
Mandelstam plot only if the channel in which the fixed
invariant is the energy contains resonances. The

l'IG. 3.3. Poles and zeros of

Fp(x, y) =F (1—x) I'(1—y) /I'(1 —x—y) .

Poles are shown as solid lines, zeros as dotted lines. Except for
the (PCAC) zero along x+y=1, all zeros serve to cancel pos-
sible double poles in the double spectral region x&0, y&0.

asymptotic behavior in a direction corresponding to a
fixed value of an invariant is exponentially decreasing
if the corresponding channel has no resonances. This
behavior is illustrated in Fig. 3.2 for Fo($, u). Said
another way, if an exotic y channel has no Regge
trajectories to provide power behavior, x &&', then the
amplitude falls faster than any power asymptotically.

E. Duality: Formulation of Dispersion Relations

The function Fo(x, y) is dual in the sense discussed
above in Sec. II.D, its asymptotic behavior being
entirely determined by its residues and the locations of
its poles, with any additional entire function excluded.

In the language of (2.10), Fo(x, y) can be repre-
sented as

1 (1-y) y)(-x) Y

r(X+x)
=, r(Z)r(x) y

for negative x, and by

(3.18)

(3.19)

I'(1-x)(-y)

0

FIG. 3.2. Asymptotic behavior of the function F& (x, y) =
F(1—x)F(1—y)/I'(1 —x—y), where xo:s, y~u, and 0 means
exponential decrease.

"See in this connection the interesting example of Dolen,
Horn, and Schmid (1968), Sec. VI.C.

for negative y. The sum of x poles diverges at positive y
to form the sum of y poles. There is no additional entire
function in (3.18) and (3.19) . Expansions such as these
are the narrow resonance formulation of dispersion
relations, and the absence of entire functions is related
to the absence of undetermined subtraction constants.
One may also be interested in writing down the narrow
resonance analog of the dispersion relation in v for fixed
/. Here this is (Whittaker and Watson, f 1927, Ch. 14.
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TABLE 3.1. CoeKcients of the Legendre polynomials contained ill SpeCtral regiOn Where S and u are bOth pOSitiVe. There iS
the model ~v amplitude (3.13), normahzed to I.=N=1 also the extra (PCAC) zero along t= 1—x—y=0,

which we will discuss below. "

Ex. 24)

25/16
3/2 25/16
3/2 5/16
0 5/16

1.43
1.43
0.681
0.759
0.0785

G. Angular Mome~turn Towers

Note in Fig. 3.3 the places where a dotted line
crosses a solid pole line in the physical s channel
(y& —,', t&0). The number of times a pole is crossed
gives the order of its residue. For example, the pole at
@=2 is crossed twice, at 1=0 and t= —1. The corre-
sponding residue has a factor t(t+1), and since cos tl,

is linear in t, we have a tower of poles at x=2 with
angular momenta 0, 1, and 2. This structure is shown
in Fig. 3.4. This degeneracy is the same as that of the
Schrodinger hydrogen atom.

X I [v+ 4 (1—t) —E]-'+[—v+-,' (1—t) —E]-'I,
(3.20)

again with no additional entire function. From (3.20),
it again is clear that the amplitude falls faster, than any
power as

~

v
~

~~ for fixed t

We can easily check that (3.19) diverges at y=1
in such a way that

Fo x/(y —1).

t.(s)= Z E-
K=l

(3.21)

we have, evaluating (3.19) for high E in order to
isolate the divergences,

I'(E+y)
x=& I'(E) I'(y)

Recalling the definition of the Riemann f function
(EHF, 17.7) as

H. Behavior of Partial Widths

We define [cf. Eq. (3.19)]
+1 I' (1V+a+ t)

H(1V, L,) = dzJ'r,(s), (3.23)
—1

I' 1V I' a+t
where z= 1+2t/(1V —a) = cos e, the s-channel scat-
tering angle.

The partial widths of the internal states in Fp($, y)
are proportional to H(1V, L) . In fact, one can convince
himself that H(1V, L) &0 for all (1V, L) provided
—,'&a&1. Frampton and 1Vambu (1969) have given
an asymptotic argument, including an error esti-
mate, tha, t for a&3 the H(1V, L) are positive for
large Ã. Numerically, up to rather high E, it is straight-
forward to show H(1V, L) &0 (Shapiro, 1969; Wagner
1969a). Combining the asymptotic argument with the

incest rol re9 ~on

x(9) x

—[I'(y)] ' g IKvg 'y(y 1)Ev '+0(Ev-')I—--
y~1 K=1

X IK '+xK '+0(K -')
I

——[1/I'(y)]Is(1 —y)+[ly(y —1)+*]

Xf (2—y)+'' 'I ~ [x/(y —1)], (3.22)

x (f) x x x

x(p) x(p') x x x

p p x(e) x(g x x

p

N

where we have used the fact that f (z) is analytic except
for a simple pole of unit residue at s= 1.

For a more detailed discussion of duality in narrow
resonance models the reader is referred to Sec. II.D.

F. Poles and Zeros of Fo(p y)

It is interesting to examine the poles and zeros of
Fo(x, y) over the Mandelstam diagram shown in Fig.
3.3. Xote that there are no t-channel -poles, that the
poles are equally spaced, and that equally spaced zeros
enter which cancel possible double poles in the double

I' IG. 3.4. Chew —Frautschi plot showing mass spectrum of
I'(1—x) F (1—y) /I'(1 —x—y) . Note the absence of ancestors and
also of the possible ghost state, of (mass)'= ——,'-, at 1.=0. The
.first few states are labeled with the names of known mesons.
Compare Figure 2.3,

"The zeros of the entire function

E(x, y) =r '(1—x)F '(1—y)F(x, y)

are what has to be fixed in order to prove that I 0 is unique.
Unfortunately, the mathematics of entire functions of several
complex variables is difFicult and largely unknown. In this connec-
tion see J. Korevaar and S. Hellerstein, in Entire I'zsnctions and
Related Parts of Analysis) (1968), Hormanderf (1966), Fuksf
(1963), and Siegalt (1948). The several complex variable aspect
of the problem makes the derivation of rigorous results, including
positivity of widths, nearly intractable.
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numerical one, it is probably possible to construct a
rigorous proof of positivity.

The first few relative values of H (N, L) are shown in
Table 3.1. A convenient formula for the H(N, L)
may be obtained as follows. We first note"

T (x)=r(N+x)/r(x) =ttT~(d/dI )e~*j„,. (3.24)

Using the Gegenbauer expansion, "we obtain

e"'=e "'~' P (2L+1)ir,(ps/2)P&(1+2~/s) (3 25)
L=O

where ir, (s) is the modified spherical Bessel function of
the first kind:

O. I

CP

C)

co (s/2) L+2m

ir, (s) =-'m'~' Q
=0 m!r(L+-,'+m) (3.26)

0.0 I

For the Eth pole, we set s=E—u, so that

H(N, L) = IL2/r(N)]T~(d/dIJ, ) e"'

&«xp I:—ku(N —~) j4Lk~(N —~) )I,=o. (3.27)

IO
10 20 30 40 50

We can achieve a qualitative understanding of how
H(N, L) behaves as a function of N and L by going
back to the defining integral, (3.23), and examining
the integrand pictorally. The polynomial, T&(x), is of

—
I 00

50
X

0
00I-

—-50

0—
Physical region of cos 8

j f I I i I

-9 -8 -7 -6 —5 -4 —3 —2 —
I

I l I

0 I

"The polynomials T~(x) appear in connection with the spin-
matrix polynomials (Nelson, 1969) . It turns out that the s wave
widths are related to the generalized Bernoulli polynominals.
See Nielsen) (1923) and Jordan) (1947). The TN do not form
an orthogonal set, but are related by difference operations."See Watson) (1966),pp. 128 and 368 ff.

I'IG. 3.5. The behavior of T& (x), the pole residue of the eighth
tower in

Fo(x, y) = ~ T&(x)
p —E

The physical region in cos 0 is shown for an intercept slightly less
than —,'. Curve a, associated with the right-hand scale, shows Ts(x)
in toto,' curve b, associated with the left-hand scale, shows the
central oscillations of (T8x) magnified by 10' v ith respect to
curve a.

Frc. 3.6, Width of resonances in the 50th tower as a function of
their angular momentum L.

1Vth order in x, with parity (—1)~ around the sym-
metry point x= ——', (N —1), and with oscillations that
increase in magnitude as we leave the symmetry point.
A picture of T8(x) is shown in Fig. 3.5.

Clearly, T&(x) has N integrally spaced zeros, which
for a= —,', are spread across the physical region in s in
such a way that the ends of the chain are at s& ———1
and s2

——1—2a/(N —a) . Since the amplitude of the
oscillations in T~(x) increases linearly around x=
—2(N —1), for a= —', and large N, in (3.23) we are
electively integrating over the forward peak between
s = s2 and e = 1."Since Pr, (1)= 1, the integral is positive.
Shapiro (1969) discusses this more fully.

As a ——,'becomes negative, the most backward zero
moves into the physical region and some widths become
negative. If we use our formula for H(iV, L) in terms
of il., we see that H(2, 0) = 0 for a= —', and this width is
the first to go negative as u decreases. In agreement
with Frampton and Nambu (1969), asymptotically
there are no negative widths created until a reaches
—',, at which point H(N, L) =0 for N Lodd. This last—
remark is easy to verify from the formula, (3.27); we

"In other words, each pole residue of F0(x, y) has the typical
angular behavior associated with Regge pole exchange. See
Edent (1967), Chap. 9, and Collins and Squirest (1968), VIII.6.
The slope of the forward charge exchange peak in sr+71- ~7l-07i-o

compares favorably with typical experimental values for other
processes using a trajectory slope near 1 BeV 2 (Shapiro and
Yellin, 1968; Shapiro, 1969) . This is so far the only phenomenolog-
ical success of the Veneziano model. (The ratio Ff/I', =0.8 is
not a success of this particular model, but results independently
from the FESR. See Schmid and Yellin (1969) and also Sec. X
below.
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have

3 I d
T~ —exp (—s3pa ——',pN) ~ Tx ———,'(iV —1) I

dp a~1/3 dp )

=~—r) r (
————;jr-i)) (3.2s)

dp,

and is(z) = (—1)siz( —
, z) . For large X and fixed

L«(iV)'", the X behavior of the residues is approxi-
mately

H iV L S '/lo A (3.29)

H(E, I ) ~ exp f—(L'/Ã) log cV]. (3.30)
N fixed, I»I

A plot of the widths H(1V, I.) for %=50 is shown in
Fig. 3.6, which illustrates the behavior (3.30) .

The results above may be verified by using $EIT,
4.14(33, 35)] (compare Blankenbecler and Goldberger,
1962; Kugler, 1968)

1 s '/' E~
H(X, L) d»—JO 2L 1——

1-2a/N P (y)

dk exp ( —X log Xz)JOL2L(z)'i'j

y g C,(~)~i
j=0

=2k" g C,'i~if( j+1) (iV log X)-&—'
j=0

(, ) 8
L fixed, N~oo

corresponding to the usual Regge asymptotic behavior
times logarithmic shrinkage (see Collins and Squires, t
1968, Sec. VIII. 6), while the L behavior for large
fixed Ã and L«(E) 'i' is

J. J-Plane Structure

The structure of the model partial wave amplitudes
as a function of complex angular momentum is nearly
the simplest possible: they have poles in J whose
location changes with energy in the I=0 and 1 channels,
and fixed poles for I=O and 2. Part of this is clear
already from the discussion of asymptotic behavior in
Sec. III.E. Since F(z, y) has pure moving power
behavior x~ " as x gets big and for fixed y, there can be
no J-plane cuts. Cuts would induce something more
complicated, the usual guess being a logarithmic
dependence (Oehme, 1964; Rothe, 1966) . In fact, since
F(z, y) has no signature in the z or y channels, there
can be no right signature fixed poles either, since these
would generate fixed power behavior, x . This explains
the conclusion about the I= 1 partial wave.

As we have seen, however, F(u+bs, a+bed) has expo-
nentially decreasing behavior for

~
i

~

=
~

~i (s—I) ~~oo
at fixed t. This amplitude is even (signatured) in v and
therefore the only possible J-plane signularities are
(wrong signature) fixed poles at the "nonsense" points
J= —1, —3, —5, ~ ~, which would not affect the
asymptotic behavior. These poles in fact exist and
contribute to the I=0 and 2 amplitudes.

For illustrative purposes, let us derive the form of the
Regge residues and trajectory functions. Using (3.19)
and (3.20), we have the expansions

I'(E+&+-,')
=, r(E) r(t+-', )

&& I L—.+-,'(1—~) —If)-'—t.+ s (I—l) —&j-'},

(3.33a)

N log N ' N log N

where L, is a Laguerre polynomial and we have used"
LGR, 8.722(1)3

Pr, (z)—Jo[(2L+1)—', (1—s) '"j (3.32)

for L)&1 and 1—s((1.
The behavior in L is therefore that of a model in

which there is an impact parameter which grows as
s'i' (up to logarithmic factors). The largest H(iV, L)
occur for L & (X)»'. Sivers and Yellin (1969b), Drago
and Matsuda (1969), and Oehme (1969a) all discuss
this behavior. This model has, as one might expect, no
absorption in it. Partial waves are roughly constant out
to some maximum L, beyond which they fall ex-
ponentially. '7

"Strictly speaking, one should verify that (3.31) converges.
This can be done by using the results listed in EHE', 10.15 and
Buchholzt (1969), Chap. IU.

"This behavior occurs in any rising trajectory model in which
asymptotic behavior is determined by moving J plane poles
only.

X IL—~+l(1—i) —I~3 '+L~+s(1—l) —I~j '}

(3.33b)

which we can think of as fixed-t dispersion relations in
I with a discontinuity equal to a sum of Dirac delta
functions. Proceeding in the usual manner (see Eden)
1967, Sec. 5.3), we define the partial wave signatured
amplitudes

a*'(J, f) = '/ dzgz(E) [Ds'(t, E)AD&'(ts)], , ,
0

(3.34)

where z= cos 9, =v/2t, and where by Dz, we mean the
left-hand (v(0) 5-function discontinuity of (3.33) . We
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then get

ap'(J, t) =0,

a '(J t) =0,

not vanish. The residue of the first I=2 fixed pole is

(3.35a) sin trt " I'( —t) I'(m+1+t)i t 2g 1 m

(3 35b) ir ~=a F (m+ 1)

I'(E+t+ ts) 2Z —1
a '(J, t)=2g Q ', QJ 1+

(3.36a)

sin ~t
=2g duu'(1 —u) ' '(1+u)

= —gt2 '. (3.41)

r(K+t) 2E—1
a+-(J, t) =2g Z (—1) r(z)r(t) Qz 1+

t

(3.36b)

We are looking for the singularities of a '(J, t). Each
term in (3.36a) has the fixed poles at negative integral
J present in the Legendre function, Qg(s), whose
analytic properties in J are evident from the relation
[EHF, 3.2(5)]
Q.(s) =

I
x"'I'(J+1)/I'(J+$) (2s) '+'3

&&spt[sJ+I sJ+si J+5i (I/&')] (337)

To see whether they are present in the partial wave
amplitude, we must use the fact that the residue of the
pole at J= Nof Q~(—s) is P~ t(s) to compute

r (@+t+-', )yP t =2g
x=, r (J~) I'(t+-,')

2E—1
1 t —', & —E, 3.38a

t

2E—1XI'~ x 1 t( —E . 3.38b

In fact, &P(t) =0. This is most easily shown for the
case A = 1, where (3.38a) becomes

r (@+ty-',)
x=, r(E) r(t+-', )

(t+-', & —1), (3.39)

which vanishes because of

r(z+t+ ',)-
llilli- ran=i I'(&) I'(t+s)

I' (I'+ 1+t+—') ~0r (&)I'(t+-,') (t+-,') (t( —s) . (3.40)

This is in agreement with our comments above. That
the residues of the other fixed poles vanish can be
shown in a similar manner. The situation is different
for the case of the I=2 fixed poles where ys'(t) does

)( g [If~+'* ~ i+0(Ifi+—l ~ t) j (34—2)
K=1

which has a simple pole at J= t+ ', =rr(t), as—can be
seen from the analytic structure of the Riemann zeta
function.

&(&)= Z & '=(& 1) '+—&r(s) (343)
K=1

The residue of the leading Regge (moving) pole is then's

Po(t) =gI "' (t)/r[ (t)+-'3I (lt)'", (3.44)

where (t/4) =q' is the usual threshold factor. Re-
moving the leading divergence from (3.42), we find
nonleading Regge poles (satellites) with residues

&t(t) =
s (g~'") [~(V') '/I'(a+ s) 3 (3 45)

A(t) = (g~'"/96) [a(a—2) (V') '/r (a—s) 3, (3 46)

0 (t) =(g '"/384) [ '+3—l j[(q') '/I'( —l)]
(3.47)

In (3.44) the factor F '(rr+s) appears because of
the Mandelstam (1962) symmetry of the partial wave
amplitudes

a( —J——',, t) =a(J—-'„ t) (J integral). (3 48)

"Fivel and Mitter (1969) give the following expression for
the P„(g), using the approach of Khuri (1968):

~~l/2 ( 1)n~2a —2n fn/"] (g/2) 2y( (~)
e,.( )=2"+'I'(o.+3/2 —n) „=0 1 (n —2p+1)

where Pn/2$ is the integer part of I/2 and

I' (n+3/2 —n)
F (m+3/2 —n+ p)

'

t, (ol = (d/ds) &'fe *"(sinhz/sl '].=0.

The other residues of the fixed poles at wrong-signature
(odd) negative integers can also be shown to be nonzero
(Fivel and Mitter, 1969; Drago and Matsuda, 1969;
givers and Yellin, 1969a; Allesandrini and Amati,
1969).

We now examine (3.36a) and (3.36b) for moving
singularities which appear as divergences of the infinite
sums. Using the asymptotic expansion (3.15) for the
gamma function and the large s expansion of (3.37),
we find

I'(J+1)
ai J, t gm'"

4 I'(J+-') I'(t+-:)
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Note that the trajectories begin compensating each
other as we reac h the level of the third daughter
instead of having zeros at all half-integers. [I no com-
pensation occurre, „nd p (n) would contain the factor

%e can check that the I= 2 amplitude has no moving
poles by noting [GR, 9.522(2) ] that

Z (—1) K- =(2'- —1)f(s) (349)
K=1

L k.
' t the form of the I=O amplitude, we see

that we can wr'write it as a linear combination o i (i,
and A2+(i, t):

at s=-= —1, t=O. If we translate this into a statement
about the widths, putting in the (2J+1) factors and
the isospin Clebsch —Gordan coeK,cients, we get

which is the same result one gets from the current
a, lgebra sum rules (Gilman and Harari, 1968) . (See the
discussion in ec.S V for more about current algebra
and the mn narrow resonance amplitude. )

M. Finite Energy Sum Rules

The usual I= 1 and 2, finite energy sum rules
(FESR's) for a Regge-behaved amplitude of the type
we are considering, for arbitrary t, are

g,+(J, t) = —,'ai-(J, t) —3a~+(J, t), (3.50)

so that we have both 6xed poles and moving poles o
isospin 0, again in agr0,

'
greement with our remarks above.

+N
i dvD2'(v, t) =0,

2 —N
(3.54)

K. Exchange Degeneracy

From (3.50) we see that the I=O Regge trajectory,
the f trajectory, is degenerate wi

trajectory. This is a gene. Th' '
eral feature of narrow resonance

d l which have no resonances in a particu ar
channel. In this case, exchange degeneracy (
1965) is guaranteed by the absence of resonances in the
physical t region for the I= 2 amplitude.

L. Sum Rules at t= 0

If we use t e ormu ah f la (3.33a) for the I=1 amplitude
l Yellinat t=, we ge= 0, t the ~m sum rule for this mode ( e in,

1969b):

1'( ') =2+ + '+ —'+" .
=, r(-;) r(K) (K——;) 3 20 56

(3.51)

In (3.51), the contribution of the (p, e) tower is 2, the
tower yields —',, etc. (The states are named in Fig. 3.4.)

Curiously enoug, esel h, th contributions are in qua itative
agreement wi e'th th phenomenological estimate o
Gilman and Harari (1968).

Along t=0, A2' vanishes. Explicitly in (3.33b) we
see that the factor r '(t) accounts for this. This means
that the contri u ion oh t 'b t' of each tower to the discontinuity
in v along t=0 is zero.

If we write out the I= 2 discontinuity in v or
arbitrary, up o anb t, t an inessential overall factor we have

r(K+t)
( )=Z(—)

(K) (,)
&& I~I +-'(1—t) —K]—~l

—+-, (1—t) — ]l
=-'[Po(z, ) —Pi(z, ) ]5(v——',)

+ 8 [-Pg (s,) —P, (s,) ]8(v——,') + ~ ~ + I z.~s„, i'~ —i'I.

(3.52)

XVe see here, for example, that p and e cancel eaceach other

+N g a+i
di Di'(v, t) =p +

2 —N cx 1
(3.55)

1 +~, I'(X+1+(x)
( ) (-)(-+»

1 +O(1V ') (3 57)
(n+1) r (a) 2x

As expecte, . os
'

ed (3.56) oscillates as each succeeding tower
is added, while (3.57) yields a sum over the con ri u-

tions of the Regge trajectories. "
N. Uniqueness

At t is poin we wA h
' t we would like to speculate on the

possibilit that Eq. (3.13) is a unique solution to e
narrow resonance xxesonance mx amplitude under the assumptions

a(a)-(f) o ec.f S . III C." We have not constructed

"The pecuhar form o pof the ole residues in F0(x, y) lea s to a
e of the model which ma es possi e a

h h t r(X+I')/j. (E)r(I') ot o I
X in V but if y is integral, it is a polynomialp y ~: ~ -- y() '

f, ~ ~ b
'b t to th iht-h d id of thgg ~ j o. o

dh bFESR, and we can calculate pe the artial m.~ wi t s y
usin the various moments v .

'l to thpossible uniqueness proof very sImI ar o

ent of this section has been developed
by one of us (J.Y.) in collaboration wIt, '. as

where P is the Regge residue with the q'" factor removed
reduced residue). Because even and odd spins have

&3.52, we can expect an oscillatingopposite signs in
~ ~ ~

behavior wi eh
' 'th the amplitude of the oscillations in-

tcreasing wit, or'th t f r t)0. Choosing X such tha
K+—,'t &X& ,'+K+ ', t+ 1,—-the hig-hest tower

included has [cf. (3.33a) and (3.33b)] index K, and
by induction we get

1 +~, r (t+E).'(, )=l(—)(+)
2 —N
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proof of this conjecture, but it is interesting to try to
find a counterexample in order to see how the various
assumptions constrain the model.

Except for assumption (a), the narrow resonance
approximation, all the assumptions listed are physical
ones. In Sec. VI we will further examine amplitudes
which contain cuts and violate assumption (a). There
we will see that it is possible to remove the poles from
the real axis, keeping all other desirable properties.
This has been done by Suzuki (1969).In this procedure
the input widths are unconstrained.

As for the analyticity requirement, assumption (c),
we can argue that the polynomial residue, G(E, y),
must be of order E because of crossing and Regge
behavior. That is, as y—+~, for fixed. x, we must have

lim $G(E, y)/(x —E))=y~/(x —E) (3.58)

or else we will get the wrong set of Regge trajectories.
Requirement (e) eliminates representations with

poles in three channels, as we will discuss in Sec. IV.
If we relax requirement (e) and attempt to break
exchange degeneracy (Mandelstam, 1968b), the posi-
tivity condition seems to be violated.

Condition (b), Regge behavior, is certainly neces-
sary. If we did not require Regge behavior, we could
have functions of the form

Fp(a+bs a+be)+Fp/a+ (bs/2) a+ (bl/2) ], (3.59)

which give an infinite number of negative widths"
(Shapiro, 1969) .

Requirement (f) fills a trivial hole in the positivity
requirement. Referring again to Fig. 3.3, we see that all
the zeros of Fs, except the one mentioned in (f), play
the role of preventing double poles from occurring at the
intersection of the x and y poles in the double spectral
region, (x, y) &0. Requirement (e) tells us that, except
for the PCAC zero at t= 0, the other zeros are straight
lines in the Re x—Re y plane. If we move the PCAC zero
by an infinitesimal amount, then all widths change
only infinitesimally, and we could generate a counter-
example,

f+e I'(1—x) I'(1—y) I'(1—x) I'(1—y)Fp(x, y) = +e
t

' I'(1—x—y) I'(2 —x—y)

(3.61)

where we must choose the sign of e so that B(2, 0) is
positive since for a= -', and e= 0, H(2, 0) =0.

If we try to shift the zeros around more drastically,

"In connection with the positivity requirement, there arises
the following problem: %hat restrictions are there on the posi-
tions of the roots }xP } of the polynomial Rs (x) of order E, such
that all its Legendre coefficients, XkN, RN(x) =+I, p Xf, PI„-(x),
are &0? A not very useful constraint on the }xP}is that the
sufficient and necessary condition

yp yl

where the second term has all the same properties as
the first but leaves out some of the particles in the
spectrum. Conversely, we see that if we try to vary the
spacing of poles and zeros in the model, the asymptotic
behavior is no longer Regge-behaved (Bali, Coon, and
Dash, 1969b).

The positivity condition, assumption (d), prohibits
the use of subsidiary terms like

det

pp (gIN) ~ ~ ~ ~ . ~ PN (~IN)

I'(E—x) I'(P —y) I'(E—y) I'(P —x)+ (3.60)r (E+F+-iV x Z) r (E+—F—pm x y)
'——

&p(~NN) ~ ~ ~

~ ~ ~

&N (~NN) ) 0

PP ($1 ) ~ ~ ~ I'N (~IN)

X X

X X X

X X X X

X X X X X

x x x x x

0 X

0 X

0 X 0 X

X 0 X 0 X

0 X 0 X 0 X

det

M

t ~p(~NN) ~ ~ ~ PN (SNN)

hold for all y;&0, provided the }x,v} are distinct. Information
FIG. 4.1. Chew —Frautschi plot for mass spectrum of (a) Veneziano about this problem can be found in Szegof (1939), Akhiezer and

representation and (b) Virasoro representation. Kreinf (1938), and especially Mardenf (1949) .
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positivity is destroyed. '2 For example, consider

1+ (1+— P (zy),

r (1—x) I'(1—y) I'(2—x) 1'(2—y)+er(1—x—y) r(2 —x—y)

where the residue of the pole at x=X is now

y(y+1) "(y+&—1) y(y+1) ".(y+&—1)

(3.62)

model can be formulated for other amplitudes (Hara,
1969; Virasoro, 1969a), it takes its simplest form for a
reaction such as m~—&~~, where the factored amplitude
is completely symmetric in s, t, and u. Let x=a+bs,
y=a+bf, and s=a+bg Ui. rasoro suggested using
V(s, t, n)

r ( —*/2) r (—y/2) r (—s/2)
r (—(x+y) /2) r (—(x+z)/2) r (—(y+s) /2)

(4.2)
+eXy'(y+1) ~ ~ ~ (y+S—2). (3.63)

No matter how small e is chosen, there will always be a
range of S for which Ne is large and the second term in
(3.63) dominates the first term. The sign of the con-
tribution of the second term to the width of a spin I.
state relative to the first is

(—1)~+'+' sg ( ), (3.64)

so that there will be an infinite number of negative
widths either for (X+A) odd or for (1V'+L) even,
depending on the sign of e."A similar thing happens
when we consider the example of Matsuda (1969b):

s(x, y; 4)

r(1—x) r(1—y) » y' (1 x y)I"(1—x—y)

(3.65)

No matter how small X is in this expression, we con-
jecture that there are an infinite number of negative
widths.

Additional material relevant to this section can be
found in Atkinson and Dietz (1969), Boguta (1969),
Moffat (1969), and Tokuda (1969) .

IV. MODIFICATIONS OF THE FOUR-POINT
FUNCTION

Most work on narrow resonance models has made
explicit use of the form

r(m —x)r(n —y)

, ,„r(ns+e+p —x—y)

with a small number of terms in the sum. This is
usually done for simplicity because the properties of the
beta function are relatively well known. There are,
however, other possibilities for the functional form of a
narrow resonance model which we will discuss in this
section.

A. Virasoro's Representation

An alternative to Veneziano's beta function form was
proposed by Virasoro (1969a) . Although Uirasoro's

"This bad asymptotic behavior of widths comes from altering
the fixed angle behavior of I 0(x, y). We thank S. Mandelstam
for pointing out to us the importance of fixed angle behavior
in the uniqueness problem.

This form simultaneously exhibits the poles in all three
channels and has definite signature trajectories only.
The spectrum of poles in Virasoro's model is compared
with that of Veneziano s in Fig. 4.1. The partial wave
projection, a(J, x), of Virasoro s amplitude has melti-
pHcative fixed poles which appear in the Regge residues
at negative wrong signature integers:

I' (x/2+ 1/2)
r (x/2 —D/2) I'(x+3/2) '

where D= x+y+s= 3a+b(g, m,') and E(x) is entire.
These poles therefore do not affect the asymptotic
behavior of the physical amplitudes, but appear only in
the asymptotic expansion of the signatured amplitudes.
In the Veneziano form, as discussed in Sec. III, a term
like 8(—y, —s) contributes additive fixed poles to the
partial wave projection, u(J, x), also at the negative
wrong signature integers. The fixed poles in both the
Virasoro and Veneziano representations seem to be
manifestations of the Gribov —Pomeranchuk phe-
nomenon (Gribov and Pomeranchuk, 1962) and violate
unitarity. "A more complete theory would be expected
to have cuts in the complex J-plane to shield these poles.
Once cuts are allowed, there seems to be no way of
eliminating one representation in favor of the other on
the basis of the properties of its fixed poles.

One property of Virasoro's representation which
sometimes proves inconvenient is the presence of poles
in all three channels. Suppose, for example, that one
wishes to use the Virasoro representation for ~~ scat-
tering. Although the intercept of the leading trajectory
in the 7r+m+ channel can be made as negative as we like,
we cannot eliminate the exotic poles in this channel
entirely (Virasoro, 1969a). For reactions in which one
channel has exotic quantum numbers, the assumed
absence of poles in this channel can be used to restrict
the number of Veneziano terms considered, and leads

"The argument that the wrong signature fixed poles of narrow
resonance models are manifestations of the Gribov-Pomeranchuk
phenomenon, and do not represent the potential scattering poles
which begin to move as a coupling is turned on, is due to Mandel-
stam (1969a). As shown in Sec. III, the additive fixed poles in
Veneziano's representation have energy-dependent residues be-
having as 2 '. According to Mandelstam, the essential singularity
at t= —~ replaces the usual left-hand cut, and Fo(n(s, ), o. (zs)),
as far as t-channel effects, will be similar to the third double-
spectral function. If this is correct, three-particle intermediate
states ~Vill produce cuts in the J-plane, in the lowest order in
which they appear, for any reasonable unitarization scheme.
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B.The Generalization of Mandelstam

Mandelstam (1969a) has found an integral repre-
sentation for a narrow resonance model which has
linear trajectories, polynomial residues, crossing sym-
metry, Regge behavior, and which includes the
Veneziano and Virasoro representations as special
cases. The formula is

M (x, y, z) = rD dylan
~ 'yf v '(2 —).—yf)

' '

immediately to exchange degeneracy. For example, in
Sec. III we saw how eliminating exotic x+~+ resonances
gives degeneracy between the p and f trajectories. Since,
in Virasoro's representation, all channels contain
poles, one cannot have this simple exchange degeneracy.
This is one reason why Virasoro's model was eliminated
from consideration in Sec. III.N, by requiring that
there be no I= 2 poles.

Mandelstam (1969a) has found an integral repre-
sentation of Virasoro's amplitude. Vira, soro (1969c)
and Collop (1970) have generalized Virasoro's model to
E particles. So far as we know, there has been no
thorough examination of the factorization or positivity
properties of the model. '4

aries of R. Expanding F(X, yf) in a power series, we can
express (4.6) as a sum of terms of the form (4.4).

The integral representation for the Virasoro ampli-
tudes (4.2) is a special case of (4.4), with

vi ——vs= vs= —1/2(D+3). (4 7)

The Veneziano form appears if one or more of the v;
are —1. The integral then diverges along one side of
the triangle and we And

lim (vs+1) M(x, y, s) = dXX * 'yi-™
dylan (yf+X 1)—

Frt . 4.2. The region of integration for the integral representa-
tion of Mandelstam's generalization of the Veneziano and Vira-
soro representations.

1 X v1 1
X

yf(2 —X—yf) ) (2—X—
yf)

rf+X —1 "'
(4.4)

dM-'-'(1 —X)
—v ' (4 8)

where the v, are arbitrary and the range of integration,
R, is the triangle

~&1, X&1, and )+q&1, (4.5)

shown in Fig. 4.2. The formula (4.4) is a special case of

iv(x, y, E) = f sk dye * 'y " '(2 —
1
—

y)
' 'po, y),

(4.6)

where F(X, yf) is assumed analytic in R with the excep-
tion of possible power branch points along the bound-

"In this connection see the discussion of Bitar {1969a),who
discusses the Lorentz-pole content of narrow resonance models
in a rather transparent manner. If one is to have a narrow reso-
nance amplitude containing one Lorentz pole only, its pole resi-
dues must be proportional to UN(1 —s/2'') for equal mass scat-
tering, where the Chebiytcheff polynomial PEHF, 10.11(6)j is
given by f/sy(cos q) =sin [(N+1)q]/sin q. Any finite number of
residues in the P, (s) expansion of U~

Usy(1 —s/2yys') = Z [do, o +'(f) g'P;~(s,)j=0

where cosh b=t'"/2m, and where in the expansion t= (N —a)/b,
can be matched with those of the usual Veneziano sum over
terms like I'I'/F. The functions d&'~, ~„are defined in Appendix
C of Bitav and Tindle (1968) . Bitar points out that if one tries to
match the whole infinity of coeflicients, d;N, the resulting 1 I'/F
sum no longer is atonous dual. The reader is referred to his paper
for further details. See also Paciello et al. (1969a) for arguments
in a related context.

0

which is the familiar integral representation of the beta
function fEHF, 1.5, (1, 2)]. For more details of the
properties of this amplitude, the reader is referred to the
Mandelstam paper quoted above. So far, Mandelstam's
amplitude has not been extended to X particles, and
the factorization and positivity properties of its residues
have not been thoroughly examined.

C. Altering the Resonance Structure

Suppose we ask in what way the patterns of resonances
shown in Fig. 4.1 can be modified. Mandelstam (1969a)
has given a partial answer to this question.

Consider the function

C(x, y) = duu * '(1—u)-" '[1—u(1 —u)]', (4.9)

where 5 is an arbitrary constant. For 8=0 this just
reduces to a beta, function. The formula, (4.9) can be
considered as a special case of

1

C(x, y) = duu-* '(1 u) ™f(u) —(4.10)
0

where f(u) is analytic in the interval LO, 1] except for
possible power branch points at 0 or 1. Clearly C(x, y)
can also be written as a series of the form (4.1), with
p=0, by expanding the integrand in a power series
in u(1 —u).
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x 0

x 0 x

X 0 X 0

X 0 X

x o x o x o

FIG. 4.3. Mass spectrum for vanishing odd satellite trajectories,
as in (4.9) and (4.12).

By choosing 6 in (4.9) properly, we can get various
patterns of resonances without introducing poles into
the third channel. "For example,

e= D+1 (4.11)

can be shown to yield the Virasoro pattern, Fig. 4.1(b),
while

6= 1/2(D+1) (4.12)

makes alternate trajectories vanish as in Fig. 4.3. In
fact, using (4.12), we can write (4.9) in the form

C(» y) l~=~i~o+»

= 8(—x, —y) )F2( —x, —y, —1/2(D+1);
—1/2(x+y), —1/2(x+y —1); 1/4)

(1/2(D+1) )= Z (—1)"I
~ 8(—x+e, y+n).—

n=o e j
(4.13)

It is probably not possible to eliminate any more of the
nonleading trajectories than is done in Fig. 4.3. In
particular, although we have not been able to prove
this conjecture, it does not seem possible to produce
patterns such as are shown in Fig. 4.4, where alternate
used odd signature trajectories have been eliminated.
~Such a pattern can be constructed if one is willing to
accept an antisymmetric function with poles in all
three channels. The prototype example is that of
Odorico (1971b):

Fo(x, y) sin P—',n. (x—y) 7/sin [~sr(x+y) 7I.

Strictly speaking, of course, it is not possible to have
Regge trajectories of definite signature unless we have
singularities in all three channels, so that when we
speak of the signature of t-channel resonances in (4.9),
we are considering their contribution to C(x, y)&
C(s, y). Note that an elimination of any one of the
z= even trajectories, except n=0, from the resonance
structure of Fig. 4.3 would violate analyticity just as
the elimination of a Freedman —Wang daughter also
violates analyticity (Freedman and Wang, 1967;
Paciello et al. , 1969a; di Vecchia et cl., 1969; Scheck,
1969).

Finally, we recall that when dealing with sums of the
form (4.1), one can have the difficulty mentioned in
Sec. II, in that the asymptotic form may not extrapolate
smoothly into the low-energy region. For example, in
Eq. (4.9),

lim C(x, y) = (—x)&1'(—y), (4.14)

In this section we will discuss current algebra and
PCAC in terms of the narrow resonance model. Early
work along this line was reviewed by Weinberg* (1969).
For basic information about current algebra, see
Adler and Dashenf (1968).

We will not attempt a complete discussion of all the
papers which have appeared on this topic, but will
instead consider the specific examples of m~ and xÃ
elastic scattering. We will ask the extent to which

0 0

X o X

0 0 0 0

X o X o X

o 0 o o o o

which is the same asymptotic form as a beta function,
I'( —x) I'( —y) /I'( —x—y), although the resonance
structure is quite different. The function C(x, y)
therefore does not satisfy an FESR of the form (2.2)
for a low value of the cutoff, E.

See also Argyres and Lam (1969), Balachandran
(1969), and Bitar (1969b).

V. CURRENT ALGEBRA AND PCAC IN THE
NARROW RESONANCE MODEL

"There is a possible confusion in the paper of Mandelstam
(1969a). The term "Veneziano formula" used there applies not
only to a single FI'/F type term, but also to any convergent sum.
Without this clarification it might appear that alternate and/or
odd signature trajectories can be eliminated only at the expense
of breaking exchange degeneracy and introducing exotic reso-
nances, We thank S. Mandelstam for clarifying this point for us.

FIG. 4.4. Mass spectrum in which odd satellites and alternate
towers vanish. A narrow resonance model with this spectrum
probably violates crossing symmetry,
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simple narrow resonance models for these amplitudes
can be made consistent with the predictions of current
algebra and. of broken SU(2) SU(2) symmetry in
the form of PCAC.

As we shall see, the more we require of our narrow
resonance amplitudes, the more diseases appear, and
this again indicates we are not dealing with a funda-
mentally sound description of reality.

We make an operational distinction between current
algebra and PCAC. By "current algebra results, " we
mean relations holding in the limit. of exact SU(2)
SU(2) symmetry, while by "PCAC results" we mean
relations which are model dependent in that they
depend on assuming a particular form for the chilal
symmetry breaking interaction. This distinction will be
explained more completely as we examine mx scattering.
Consistency of narrow resonance hadronic amplitudes
with PCAC and current algebra has been studied by
Lovelace (1968),Kawarabayashi et al (1968)., Ademollo
et at. (1969), and Yellin (1969a, b) .

In connection with current algebra and PCAC, the
important question arises of whether or not weak and
electromagnetic form factors of the hadrons can be
determined, even in principle, from a narrow. resonance
model. "Our answer is that the behavior of a hadronic
form factor, F(q'), with respect to its argument,
depends on those aspects of the narrow resonance model
least likely to be reliable: factorization and nonleading
trajectories. As we shall explain below, this puts us in
disagreement with those workers who have, for example,
derived a form for the pion electromagnetic form factor
from simple Veneziano models.

More precisely, we believe that narrow resonance

amplitudes do not provide a definitive recipe for making
an off-shell continuation leading to an exact form, with
q' dependence, for example, for the symmetry breaking
0. vertices.

T(p;) eA+BOP+ ~ ~ ~ .— (5 1)

In (5.1), isospin indices are suppressed, e is a small
parameter measuring the strength of the SU(2) SU(2)
symmetry breaking which is zero if the Goldberger-
Treiman relation (Goldberger and Treiman, 1958) is
exact, and $ is a scaling factor for four-momenta such
that p;=$P, for some fixed P;. The constant Bo is
universal in that it appears in any process ~I'D as
the non-Born contribution to the derivative of the
crossing odd piece of the amplitude, evaluated at

' In connection with the self-consistent determination of form
factors, see Dashen and Frautschi (1966a, b) and S. Mandelstarn
(1966).

A. xm Scattering and PCAC

Following the arguments of Dashen and %einstein
(1969a), if we insist on a theory in which broken
SU(2) IESU(2) symmetry is relevant, the arm. scat-
tering amplitude can be written as

threshold for zero mass pions. In the case of m.m. scat-
tering where there is no Born term,

Bo=d/dpAi'(v, t) ~.=i= = 0=1/8', (5.2)

where, as in Sec. III, y=~(s —u) and f is the pion
decay constant. This is the current algebra constraint
for ~x scattering according to the distinction we made
above.

If we assume that SU(2) 8SU(2) symmetry
breaking proceeds via the (~, 2) representation, we get

aA = m '/87rf '= m 'B (5 3)

(Bo),g,i=—grab. (5.5)

The next job is to introduce symmetry breaking. We
will choose to do this by letting the intercept, a, vary.

which leads to Weinberg's scattering length ratio
ao/a2= —7/2 (Weinberg, 1966) .

These conclusions are really very general; if the
on-shell mw amplitude is expanded as a power series in
the Mandelstam variables about the point s= t=u=o
and if SU(2) IRSU(2) symmetry is enforced, then
current algebra implies that the constant term is zero
and the coefficient of the linear term is a universal
constant. Introducing a nonzero pion mass breaks the
SU(2) SU(2) symmetry and gives a finite value to
the constant term in the power series expansion. The
value of the constant depends on the particular choice
of the model for symmetry breaking. For example, in
the 0 model (Gell-Mann and Levy, 1960; Dashen,
1969), the symmetry-breaking piece of 'the Hamiltonian
transforms like ( —',, —',) under SU(2) SSU(2) and gives
the PCAC prediction ao/a~ ———7/2 (Weinberg 1966;
Khuri 1966) .

Now suppose we want to make the narrow resonance
model discussed in Sec. III consistent with SU(2) S
SU(2) symmetry. We first take m =0 and define the
system by

A, '(s, u) = gFO(x, y)

= gfI'(1 —x) P (1—y) /I'(1 —x—y) ], (5.4)

where the notation is that of Eq. (3.13) and the com-
plete set of t-channel isospin amplitudes is given in
terms of gFD by Eq (3.8). .To make (5.4) consistent
with (5.1) when m '=0 (and ~=0), we want the
amplitudes XI' to vanish linearly in s, I, and 3 at the
point s=u= t=0. By examining (3.8), we see that the
way to accomplish this is to insist that a=~, where
a is the rho trajectory intercept, and x—=n„(s) =u+bs
In (5.4) this gives 1—x—y= 1—2a —b(s+u) = bt, so
that the amplitude A~'(s, u) vanishes along t=0 Of.
course, this result, n, (0) = —',, depends on the choice of
amplitude (5.4) and is therefore not independent of
the uniqueness difficulties of the original amplitude dis-
cussed in Sec. III. With the particular choice of ampli-
tude (5.4), the energy scale b is related to the universal
constant of Dashen and %einstein by
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t= (q, —qb)' We choose the invariant amplitudes to be

FIG. 5.1. qt-Ã scattering.

Letting 6=a——'„we have the result

Xr' ———2g~rb
' 0 +0(b') (5.6)

iii(s) )r(1— (~) )
r (1—a&(s) —n, (~) )

(5.11b)
I'(—aiii(u) )r (1—a, (t) )

r (1—-„(u)—,(&) )

at s=l= 1=0.We therefore have

(eA/Bp) .g, i= 8/b, —

which can be compared to the usual PCAC result

(&A/+p) (-,', ~~} sym. breaking mm.

(5.7)

(5.8)

Equating (5.7) and (5.8), we get the result of Lovelace
(1968):

a+bm '= ap(m ') = 2, (5 9)

which also guarantees that the model yields the
Weinberg scattering length ratio ap/ii2= —7/2 as
discussed earlier. In order to make more plausible the
identification of (5.4), with a= —„with the SU(2) 8
SU(2) symmetric limit, it would be desirable to connect
the resonance spectrum and couplings of (5.4) with the
mass spectrum and with the matrix elements
(Hi I Q, I

Hp7r) of the axial charge operator resulting
from some independent approach. Whether or not this
can be done remains an open question. "

B. Current Algebra and a Naive Model for ~g
Scattering

"One possible ~vay to characterize the spectrum, at least in the
~—7r case, is to note that it has the l degeneracy of the Schro-
dinger hydrogen problem, so that it is a realization of an SO(4, 1'j
representation. It is not clear whether this statement is more than
descriptive.

This process is more thoroughly discussed in Sec. &:,
where we deal with phenomenology. Here we investigate
the most naive choice of narrow resonance amplitude
for ~Ã scattering with massless pions and ask if it can
be made consistent with the restrictions of PCAC and
current algebra.

We choose the amplitudes, A&+&(s, t) and 8&+'(s, t),
defined by

T(ir,&Van-p.V) =u(p') l (A++QB+) b.b

+(A +Q& ) pl:r. , rp]Iu(p), (5 1o)

where the momenta are as shown in Fig. 5.1, a and b

are isospin indices, Q =
2 (q,+qb), s = (p+q, ) ', and

by analogy with the irpr case. The "trajectory" a&(x) is
related to the usual nucleon Regge trajectory by
nisi(x) =air(x) ——', and we insist our prlV amplitude be
consistent with (5.4) so that a, (/) is the same rho
trajectory which appears in the xx amplitude above.

The model amplitudes (5.11) are merely a simple
first choice. Note that A~~' with nN —+u„has the same
form as we would use for xE scattering after making
an SU (3) rotation on the prpr amplitude (5.4)
(Kawarabayashi et al. , 1968). The usual asymptotic
behavior is included; only the 8(+' amplitudes contain
the nucleon Born terms at +~=0, and the nucleon is
therefore not parity doubled as it would be if 2&+' also
contained nucleon poles (see MacDowell, 1959) .
It is important to observe that there are no I= —,

'
resonance contributions in (5.11) because

App'(s, 3) =A&+'(s, t) —A&-&(s, t) (5.12)

"See Adler (1956b), Sec. III.

contains no s-channel poles. Therefore, the model
contains no analog of the A(1238), I=~P resonance,
which at this stage is "exotic" and must be put in by
hand. We will discuss this problem further in Sec. X.

In view of the absence of the A(1238) resonance in
the model, we may expect that something will go wrong
with the Adler-Keisberger sum rule, which gets most
of its contribution from the 6 and associated reso-
nances. " It is still interesting to attempt to make
(5.11) consistent with SU(2) SU(2) in the same
manner as the xw model.

Following Dashen and Weinstein (1969b), we find
the analog of (5.1) for the transition Him; &H2rrb in-
the limit p~0 (with m.—&0):

-', a,(H„.(q, ) I
s IH„.(q.))

= q,„q,(H I
T(A."(q.) A "(q ) ) I

H )

+q.„p.b, (H,
I

V, (q.—q, ) I
H, ), (5.13)

where the isospin indices are explicit and 80 is the
universal constant of (5.1). The "hat" over the time-
ordered product of axial currents indicates that it is
formed in the usuaI way and then has its pion poles
removed. From (5.13) we see that the scattering
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lengths for mE scattering can be computed in the
SU(2) SU(2) symmetric limit in terms of Bp (Wein-
berg, 1966) . Define the amplitudes

and where

s= 1+@(E+M')/E'jt. (5.22)

Ft+i(v, t) =A + (v, t)+ (v/2M)B + (v, t), (5.14)

where v= ip(s —u) and M is the nucleon mass. For t=0
Eq. (5.13) then yields the Adler consistency condition
(Adler, 1965a),

t Recall rN = 0 and note that F in Rv refers to (5.14) .j
Because of the relation (5.18a), the F term in (5.20)
contributes nothing. The remaining portions of the
widths are proportional to

F(+)(0 P) —0 (5.15) ds(1 —s) P'i+i'(s)+P, '(s) jTlr(-', +t),

and the low-energy theorem associated with the Adler-
Weisberger sum rule (Adler, 1965b; Weisberger, 1966):

(dFt /dv) (v, 0) ~„=p= Bp(1—1/gg ) . (5.16)

We now see if these relations can be satisfied with our
simple narrow resonance model (5.11),which yields

F&+'(v, 0) = (gi—gp/2M)

&&Iri'(1— ( ))I'(1—.(0))/I'(1 — ( ) —.(0))3
+ (s—+I) I. (5.17)

Setting v=0, (5.15) implies either

(5.23)

where Tlr(x) = I'(x+E)/I'(x), n, (t) = —',+t, and we
have used the relation t EHF 10.10 (13, 14))
F~(s) —F~+i(s)

= (1—s) L&~+i'(s) +&i'(s) 3[1/(L+1)j (5 24)

Recalling the behavior of Trr(x) discussed in Sec. III,
we see that the forward peak in (5.23) essentially
cancels asymptotically. The physical region in t is

—E'/(E+M') &t(0. (5.25)

gi =gp/2M

n, (0) =1.

(5.18a)

(5.18b)

Between the last zero in Trr( ', +t) at t=-E+ ', an—d-
t= —E'/(E+M'), there is a backward peak which is
the main contribution to (5.23). The sign of the widths
is then

Equation (5.18b) conflicts with (5.9) and we are
forced to the alternative (5.18a). Equation (5.18a)
implies that n& decouples from the system entirely for
t=p. Clearly this is consistent with (5.16) only if

(5.19)

Recalling that the Adler-Weisberger sum rule relates
(dF&-'/dv) (v, 0) ~„=p to an integral over the difference
of the total cross sections (op+—a.

p ) for charged zero-
mass pions on protons, we conclude that positivity of
widths must be violated somewhere by the model in
order to have gg'=1 since the I=-', cross section, oo+,
is zero.

We can check to see where positivity breaks down.
Suppressing isospin, the residues of the poles in the
s-channel partial waves of (5.11) are

hm f nor(s) E]as~;s(J, t)—

+1
Il+] s II s Rp E)

s~—M'
X Rg K, t , , Egg E, t , 5.20

where aip (sir) =E, L=J p, —

It.,(E, t) =x(v, t) (n~(s) —E) ~a~(,)=rr, (5.21)

sgn W'~+-: ) =~(—1) '. (5 26)

We therefore conclude that all trajectories in the model
are parity doubled and one partner of each pair is a
ghost, (has nega, tive residue) at least asymptotically.
It is the existence of these ghost states which makes the
Adler-Weisberger sum rule consistent with gg'=1 in
this model. Clearly we can try to escape from gz = 1 by
adding terms to (5.11) which contain the 6 trajectory.
It is possible to remove the first ghost trajectory or even
the first two ghost trajectories from the model by adding
more terms. This is what is done by those authors whose
fits to this amplitude will be discussed in the phe-
nornenology section (Berger and Fox, 1969; Lovelace,
1969b; Fenster and Wali, 1970; Igi and Storrow, 1969),
on the grounds that &host problems occurring on lower
trajectories can safely be ignored within the approxi-
mation of the model. We do not believe that adding
extra

'

terms provides an attractive solution to the
ghost-parity doublet problem, because the model does
not distinguish leading and nonleading trajectories in

any way, and ghosts inevitably remain, at least at the
second satellite level.

With respect to this situation Fenster and Wali
(1970) make the interesting point that if one works
with a narrow resonance amplitude for x/~xX in a.

circle in s, t, u space with center at the origin and with
a radius of a few (BeV)', and further if one allows

enough secondary satellite terms to banish ghosts
from such a circle, the resulting g~' has a negative sign.

We will see in Sec. VII that ghost trajectories also
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occur when we try to construct a self-consistent narrow
resonance model for meson —meson scattering, lending
credence to the view (Yellin, 1969b) that any attempt
to construct a complete1y self-consistent theory with-
out an infinite number of ghosts will have to go outside
the framework of the narrow resonance approximation.
The above simplified discussion of ~Ã scattering is
very reminiscent of the isospin-factored current algebra
theorem of Chang, Dashen, and O'Raifeartaigh (1969),
who show that saturating current algebra relations
with I= —', one-particle intermediate states leads to
equations which are either physically trivial or deeply
diseased.

C. Off-Shell Behavior in the Narrow
Resonance Model

In this subsection we comment briefly on the mass
extrapolation problem for the reaction PH~P'H',
where P and P' are pseudoscalar mesons and H and
H' are arbitrary hadrons. The point we wish to make is
that it is completely ad hoc to trivially continue off-shell
an on-shell narrow resonance amplitude for PH~P'H',
containing infinitely rising Regge trajectories, intro-
ducing no off -shell dependence on q' and q", the
(mass)' of the external pseudoscalar lines. Among the
authors who do make this trivial continuation are
Arnowitt et al. (1966), Cronin and Kang (1969),
Frampton (1969), Geffen (1969), Jengo and Remiddi
(1969b), Oyanagi (1969), and di Vecchia and Drago
(1969). Their results are used in another context by
Freund (1969a). It is our opinion that one cannot
obtain form factors like F (/) from the off-shell con-
tinuation of a simple Veneziano form.

Specifically, we would like to argue that one cannot
trivially compute

(H i J„(x) i
H'), (5.27)

the matrix element of an axial or vector current between
given hadronic states, by using the on-shell form for
PH~P'H' directly as a model for the soft meson off-
shell dependence of

M b(i, t, q ', qb')

= (q,'—m') (qb' —m") (H'
~
T(D~(x) D'(0)

~
H), (5.28)

where D(x) =cl"A, (x) is the divergence of the a'xial
current and (a, b) are internal symmetry indices. For
example, one cannot use a Veneziano form for PP'~PP'
to calculate the pion electromagnetic form factor F (t)
or the Eip form factors F+(/).

In the next section we will see that if we construct
directly a form for (5.27) where one current is linked
to a hadron amplitude, then it is necessary to include
nontrivial q' dependence.

The reason that the trivial off-shell continuation of
M,g is precluded is that if there is no q' dependence, the
Bjorken limit (Bjorken, 1966), which for I'=I' and

M.b= Q c„qp ",
n=l

(5.30)

and each of the coefficients is proportional to linear
combinations of Fourier transforms of the commutators

c„~F.T.ILD (0), (8/clxp) "Db(x)]I. (5.31)

If Regge trajectories are linear, as they are in the
Veneziano model, we can always pick t negative enough
that the leading trajectory lies lower than (some
arbitrary negative integer) E, so th—at we can com-
pute the first E of the c„, and the interchange of the
gp~ao limit and the integral in the Low equation goes
through.

The c„are proportional to the residues of right
signature fixed poles (and/or Kronecker-5 singularities)
in the J-plane, of the two-current amplitude. Unitarity
forces such objects to have zero residue on shell, but in
general one expects them to exist off shell where the
usual unitarity restrictions do not hold. If we do not
introduce a nontrivial q' dependence but continue the
on-shell narrow resonance model directly, then the c„
will all vanish, and we will have none of the expected
right signature fixed poles because the original ampli-
tude does not have them.

This does not quite lead us to a contradiction, but it
does tell us that, if we insist on a trivial q continuation,
the commutators (5.31) become extremely strange and
singular objects, and that the absorptive part of (5.28)
is nonzero purely by virtue of the fact that it is given by
an infinite sum over the c„, not a finite sum. In other
words, the c„are analytic functions of t if the theory is
local. On the other hand, apart from mathematical
complications, we can show by the argument above that
they vanish in some neighborhood in t. Therefore they
vanish everywhere" unless the sum over the c diverges
in some peculiar fashion or unless some nonlocality is
introduced.

These problems do not occur for the classical PCAC
and current algebra calculations of the ~x and ~Ã
5-wave scattering lengths or the m.x or mX current
algebra sum rule, because these involve the knowledge
of the chiral symmetry-breaking terms at discrete
points only (Dashen and Weinstein, 1969b), while the
procedure discussed above would determine them in a

' Compare the discussion of wrong signature nonsense-point
Axed-pole residues in Sec. III.

forward scattering is qp
—+~ at fixed q, becomes also

the Regge limit v—+~.
The usual derivation of the Bjorken limit uses the

Low equation (Low, 1955)

M.b(qp, q) = fLdqp'/(qp' —
qo) g Im M. (qo', q), (5.29)

which here reduces to a dispersion relation in v for fixed
t. If one takes qp~~ in (5.29), inserts (5.28), and
interchanges the qp limit with the integral, one gets a
series in decreasing integral powers of qp,



SzvERs AND YELLIN Terror Resonunce Models i49

neighborhood. If one could compute the detailed
behavior of form factors, this would imply a knowledge
of the dynamics of chiral symmetry breaking far beyond
the usual current algebra —PCAC calculations —and
such a step is highly unlikely without a corresponding
increase in the depth of our understanding.

The main conclusion we reach from arguments such
as those outlined above is that the burden of proof is on
the person who proposes an off-shell continuation of the
Veneziano model to show that the chosen q' dependence
is reasonable. Without detailed supplementary assump-
tions, the narrow resonance model does not itself
contain information about oG-shell behavior.

D. The Construction of Narrow Resonance, Dual
Amplitudes Containing External Vector Currents

In the following section we will discuss the general
problem of constructing narrow resonance, dual
amplitudes for hadrons coupling to conserved currents.
A satisfactory solution to this problem does not
presently exist, even in the limited framework we have
described in previous sections. However, since the
attempt to find such amplitudes necessarily involves
many aspects of strong, weak, and electromagnetic
interactions, it is highly instructive to sketch out the
difhculties one encounters, and we will do that below,
using the one- and two-current processes pictured in
Fig. 5.2 as specific examples.

Our construction procedure requires the use of the
hadronic narrow resonance S-point functions to be
discussed in Sec. VII. Here we will merely state the
~V-point properties we require, referring the reader to
Sec. VII for further details.

In attempting to include currents in a narrow
resonance world, one hopes to gain some insight into
the detailed behavior of weak and electromagnetic form
factors, electroproduction structure functions, and the
like, or more generally into the behavior of the matrix
elements of the weak and electromagnetic currents
between arbitrary hadronic states, as a function of
momentum transfer. As will become evident below,
progress along this line has been ephemeral. In the one-
current case no one has found a practical way to con-
strain q' behavior, although one can argue that in
principle such a constraint must exist. (In the following
the four-momentum of a, current will be called q. ) In
the two-current case a method is at hand, but one is
precluded from using it because it has so far proved
impossible to make consistent identifications of particles
and couplings —i.e., to "factorize" —in all amplitudes
properly.

1. One Currenf, Amp/itudes-
Following 8rower and Weis (1969a, b), we will

impose the following conditions on the one-current
amplitude V„(q, p, ), shown in Fig. 5.2(a):

Pl i=i, N

P; i=i, N

FIG. 5.2(a). The one-current amplitude for 1V external hadrons.
(b). The two-current amplitude for Ã external hadrons.

(b) Regge behavior in all s;q ——(p,+p,+i+ ~ ~ pI,)' ";
(c) meromorphy in q' and the s;&, with simple poles

for positive real values of the associated invariants;
(d) the residues of poles in s,& are polynomials of

finite order in the overlapping variables. (The residues
of poles in q' are products of a vector meson scattering
amplitude times the strength of the current-vector
meson coupling. );

(e) the dispersion relations in q' and the s;q have
no subtractions;

(f) factorization holds, so that the residue of any
pole in s;I, is a product of some VI" with a purely hadronic
scattering amplitude.

30 The implication here is that one-current amplitudes have no
fixed J-plane poles. Discussions of the J-plane properties of one-
current amplitudes will be found in Dashen and Lee (1969),
Dashen and I'rautschi (1966a, b), Mandelstam (1963a, b, c),
and Rubinstein, Veneziano, and Virasoro (1968). Dashen and
Lee suggested that fixed poles in one-current amplitudes would
most easily appear in backward photoproduction of pions. The
data of R. L, Anderson et cl, (1969 and 1968) for backward 7r+

photoproduction do not contain evidence for a fixed pole (at
J=,'-) . Xeither does the backward 7ro data of D. Tompkins et al.
(1969). The argument of Dashen and Lee is an illustrative one
taken directly from potential scattering, and we will summarize
it briefly here.

Consider the T matrix element for

-~+A —+X+ Y, T~ pxI (r) exp (ik. r)~.VQ&{r) d'r,

where k and c are the photon momentum and polarization, and
Px y is the outgoing wave. The statement of Dashen and Lee is
that if A is a composite object lying on a Regge trajectory, T
will have no fixed poles. They argue as follows: The analytic
structure in l of the partial wave amplitudes associated with T
is determined by three factors: (i) j& from the photon's plane wave
expansion; (ii) Pz& &, (iii) Pz. The spherical Bessel function j&
is entire in l. The outgoing wave Px p can be shown to be equal
to the strong interaction S matrix, So times a factor entire in /.
The l behavior of P~ is not directly relevant. However, if A is
elementary, So has a fixed pole, which then appears in Px z, and
therefore in T. If A becomes composite, in field theoretic lan-
guage the wave function renormalizer Z—+0, A sits on a Regge
trajectory, So has no fixed pole, and neither does T. This leads to
condition (b) of the text.
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The constraints on analytic behavior in the s;I„
contained in (b)-(e), are precisely the same as those
already discussed for four-point functions in Secs. II
and III, and further extended to N-point functions in
Sec. VII. The restrictions on q' behavior are the minimal
ones required by gauge invariance, analyticity, and
factorization.

Given a pure hadronic narrow resonance amplitude
for a vector meson coupling to N spinless particles, it is
straightforward to write down a function satisfying
(b)-(f). We can compute such a function by projecting
it from the (iV+1)-point function for spinless hadrons,
using the procedure given in Sec. VII.C (iv) . Call this
function B„t~"'(q, p;), where the label e indicates that
the vector meson has mass m„, and where the q depend-
ence comes from writing the amplitude as a function of
the p, with q determined by energy —momentum con-
servation. A function satisfying (b) —(f) is then given by

X(g "—
q q"/q')8 ' "'(q p ) (5 32)

where gg„(0) =1, and the g„(q') are as yet undeter-
mined entire functions. 3' tA"e still need to satisfy the
gauge invariance condition (a), at q'=0. As shown by
Brower and Weis (1969b), Bardakci and Mandelstam
(1969),and Fubini and Veneziano (1969), by making a
simple restriction of the Regge trajectories, we can get

(5.33)

(The restriction is that 'the trajectory for a current and
E adjacent hadrons be the same as that for the E
hadrons alone. ) Applying q, to (5.32), it is ea,sy to see
that (5.33) implies q„V"=0 at q'=0.

It is essential to understand here that all of the
pathologies of the pure hadronic N-point functions will
appear in the external current amplitudes. - In our case
this is clear from the structure of (5.32), but it really is
a general property. Conversely, because there is only one
external current here, for purposes of identification we
have really renam. ed one external line, and if 8 satisfies
factorization, so does our one current amplitude V.
As we shall see in Sec. VII, factorization requires at the
minimum a degeneracy of hadronic states that increases
exponentially as one goes to lower and lower trajectories.
This implies, for example, that the eth vector meson in

"There is an important remark to be made here closely con-
nected to the discussion of off-shell behavior in Sec. V.C. The
point is that, in general, even though there are probably no
J-plane fixed poles in the one-current amplitude, analyticit&
still forces the introduction of nontrivial q' dependence. It ~vould
be incorrect to substitute, for the 8's in (5.32), an on-shell ampli-
tude for a vector meson interacting ~vith X hadrons. The recipe
for the q dependence of 8 given in the discussion preceding (.5.32)
is absolutely crucial. The problem that arises here is that in the
dispersion relation in q', if the number of hadrons is greater than
2, there are singularities in cP due to the singularities in the s;I„.
Explicitly, suppose 1V=3, and fix s and t. Then a singularity in
it, at uQ gives a contribution to the t1' dispersion relation at th'=
'llQ+s+t —m1' —m22 —qn~'. This seems to have been first noticed
by Mandelstam. See Bro~ver and leis (1969a), footnote 29.

(5.32) is not one particle, but a family of roughly
exp (e'i') individual states, each with a meson-current
coupling g(q') . The thrust of our remarks above is that
in the present state of the art there is no practical way
of computing the g's, even if they are assumed to be
independent of q'.

The question of q' dependence lies at the heart of the
difficulties inherent in an ansatz such as (5.32). Ex-
plicitly, the viability of the approach we are outlining
rests on its ability to yield nontrivial information, for
example, about electromagnetic form factors. The
problems involved are twofold.

First of all, as mentioned above, one must try to live
with all the pathologies of the N-point hadronic boot-
strap of Sec. VII. These include a profusion of (ghost)
states with imaginary couplings, an utterly unreason-
able spectrum, and huge degeneracies of states on the
lower-lying Regge trajectories which necessarily follow
from the imposition of factorization. Since, as one sums
across the vector mesons in (5.32), one reaches lower
and lower trajectories, these difhculties are a Priori
very serious, as the large q' behavior depends principally
on these low-lying levels.

Secondly, even if one could solve satisfactorily the
pure hadronic problem, the difficulties inherent in
bootstrapping currents, as outlined by Dashen and
Frautschi (1966a, b), remain to be confronted. Suppose
that we have solved the hadronic problem and that we
have in hand the corresponding self-consistent ampli-
tudes. We now want to find all matrix elements Ji„(q')
of a current J, with four-momentum q, between arbitrary
hadronic states a a,nd b Let us ass.ume, as in (e) above,
that the scattering amplitudes of the system satisfy
unsubtracted dispersion relations in all invariants,
including q'. Consider q' to be fixed at some value qo'.
The fixed q' dispersion relations then lead to equations
of the standard bootstrap form

J&.(qo') = Z &i, d(qo') Jd. (qo')

where the matrix I is completely determined by the
strong interactions alone. The relations (5.32) deter-
mine the A, (qo') up to an over-all scale factor. Knowing
the matrix elements of J for fixed q', dispersion relations
in q' itself can now be used to fix J&,(q') for arbitrary
q'. However, the arbitrariness in over-all scale for fixed

q implies that there is still an over-all unknown entire
function in Ji„(q'). If all electromagnetic form factors
fall more slowly than exponentially for large q', the
assumption of unsubtracted dispersion relations in q'
reduces this over-all unknown entire function to a
constant scale factor, which can be fixed by considering
amplitudes with more than one external current.
On the other hand, if form factors are known or as-
sumed to fall exponentially, (Taylor, 1967; Drell et at. ,
1967), then we are left with an arbitrary over-all
polynomial whose elimination will be extremely
difficult.
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To summarize the remarks above in terms of the
present model, it is possible to write down a dual,
narrow resonance, one-current amplitude of which
satisfies the required conditions. This is done in (5.32).
This ansatz reflects all the ills of the pure hadronic
V-point narrow resonance amplitudes and does not
yield any nontrivial information about the q' behavior
of electromagnetic form factors. In principle, according
to the remarks above, it ought to be possible to specify
completely the model one-current amplitudes, i.e.,
the g„ in (5.32), given complete knowledge of the pure
hadronic amplitudes, provided the resultant form
factors decrease more gently than exponentially at
large q'. Since the major result of such a calculation
would be to make manifest the model's shortcomings,
it is not clear that carrying it out would be particularly
useful. Fur thermore, the assumptions which are
incorporated in (5.32) are general enough that it seems
unlikely that mere refinements will solve any of the
basic problems. What. is necessary is a radical leap in
understanding.

Z. Two CNrrerst A-mplitldes

We now discuss the construction of two-current
ainplitudes, as pictured in Fig. 5.2(b). Following
Brower and Weis (1969b), we first write down a list of
requirements, which the reader should compare to the
previous list for the one-current case. I,et the amplitudes
in question be M„„'+&(qi, q'). We ask that

(a) (5.34a)

Vi M»" = V~(8+92) ~

and similarly for q2. Our currents are assumed to be

(a)

q2(z )
2

Fzo. 5.4. Kinematics for virtual Compton scattering.

M„,'+'= ,'[M„-„b +M "]. (5.35)

(b) Regge behavior in a, ll variables except possibly
those overlapping the two-current channel;

(c) same as assumption (c) for the one-current
amplitude;

(d) the residue of a, pole in qiP is a one-current
amplitude for the production of a vector meson;

(e) same as (e) for the one-current amplitude;
(f) we have two types of factorization, hadronic

factorization and current factorization, as shown in
Fig. 5.3(a) and (b).

There are important differences between the list
above and that for the one-current case. First of all, in
item (a) we have replaced the simple gauge invariance
requirement with the full current algebra divergence
conditions. Equation (5.34b) tells us that taking the
divergence of the part of the amplitude with isospin 1
in the two-current channel returns us to the one-current
case which we considered above, without affecting any
of the hadrons. Together, the relations (5.34) imply that
the commutation relations (Gell-Mann, 1964a)

6(Xp) fvp (X), V„'(0)]=ie.b, V„'(X)5'(X) (5.36)

hold for the current densities. There is no constraint on
the form of the space —space commutation relations
implicit in the list of requirements.

In requirements (b) and (d) we now see the echo of
the discussion in Sec. V.C. Once we construct our M,
we have in hand an off-shell continuation of the
amplitude for vector meson+vector meson~% spinless
hadrons. For definiteness, let iV= 2. Then we have the
off-shell continuation (see Fig. 5.4):
if d'x(p,

~
r(V„.(-;x), V.'( ——;x)) ~ p, )e

=M„b'(p, e, q), (5.37)

isovectors so that we can form the even and odd
isospin combinations

where

e=-:(~'+~.); V=5(Vi—Vp) i P= p(pi+p2)

FIG. 5.3. (a) Hadronic factorization. (b) Current factorization,

(5.38)

and where T is the covariant form of the time-ordered
product. It is well known that the Compton amplitude
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in (5.37) in general has t-channel fixed poles in J
(Bronzan et al. , 1967; Singh, 1967) and also J'-plane
Kronecker delta singularities (Doesch and Gordon,
1968; Gross and Pagels, 1968) . The two-current
amplitude contains more than moving poles in the J
plane, just as implied by the arguments in Sec. U.C. An
explicit construction which makes this point clear has
been performed by Brower, Rabl, and Weis (1970),
for virtual Compton scattering of currents off pions.

From (5.37) it is straightforward to check that
(5.34) implies (5.36) . Given an explicit choice of
amplitude, one can also compute the space —space
commutators, "and the behavior of M„„as Q' becomes
large, which is relevant for inelastic scattering and
electromagnetic mass differences. With regard to this
last subject we will confine ourselves to the observation
that any naive choice of amplitude satisfying (a) —(f)
will have a Regge-behaved large Q' limit, of the form
(Q') 1"1, where v—= ~r(s —n). One would like, of course,
to get instead the scaling limit of Bjorken (1969),which
says that as Q' becomes large and negative (very
spacelike in our metric), the electroproduction struc-
ture functions become dependent on the ratio v/Q'
alone.

Last and most crucial in the list of requirements is
the factorization condition (f) . There are two types of
factorization, as shown in Fig. 5.3, hadronic factorization
and current factorization. If this last kind of factoriza-
tion did not exist, then a solution of the hadronic
factorization problem for the scattering of two vector
mesons to make LV hadrons would automatically ensure
that the two-current amplitude also factorized, just as
in the one-current case. Current factorization will now
restrict the form factors provided one can enforce it for
nonleading trajectories. To our knowledge this has not
yet been done, and there is no existing model which
actually satisfies (a) —(f) for two currents. Of course,
just as in the one-current case, all pathologies of the
narrow resonance S-point amplitudes appear here.

For various explicit two-current models the reader
may refer to the work of Ademollo and del Giudice
(1969),Bander (1969),Brower, Rabl, and Weis (1970),
Ohba (1969), and Sugawara (1969). None of these
cures the basic pathologies discussed above" nor is it

p&I („,) &.'io, i*), ;V'(0 ——,'x)
i pi, c)

8' The procedure for calculating the space-space commutators
given an explicit two-current amplitude is as follows: Take the
Bjorken limit (Bjorken, 1966)

~ Qp i~ ~, P„, q„ fixed of M in
Eq. (5.37):

( —z)d'x exp (iQ x) ~ Z
Qo~co =o Qo"+'

likely that anyone will find a satisfactory model that
is not ad ho@ for deep inelastic electron scattering, since
this is closely tied to factorization of nonleading
traj ectories.

Additional material relevant to this section can be
found in Abers and Teplitz (1969), Ahmad,
Fayyazuddin, and Riazuddin (1969), de Alwis et at.
(1969), Amati, Jengo, Rubinstein, Veneziano, and
Virasoro (1968), Brandt (1969), Brower and Halpern
(1969), Cooper (1970), Costa, (1969), Drago (1969),
Fujisaki (1969a, b), Freund and Rivers (1969),
Goldberg and Srivastava (1969), Hsu (1969), McKay
and Walter (1969), Osborne (1969), Savoy (1969),
Schnitzer (1969), and Zee (1969).

VI. ALTERING THE NARROW RESONANCE
APPROXIMATION

As pointed out in Sec. II, the single most unphysical
characteristic of the narrow resonance model is the
presence of poles on the real axis of the Mandelstam
invariants and the absence of physical normal threshold
cuts. We have discussed the interpretation of the
narrow resonance limit in terms of FESR's and we now
want to examine methods of extrapolating away from
the narrow resonance limit to obtain the properties of
physical amplitudes. In making this extrapolation we
would like to preserve as many of the desirable proper-
ties of the Ueneziano model as possible. For example,
we would want the finished product to have Regge
asymptotic behavior and crossing. Certain other
properties of the model cannot hold exactly when we
have physical amplitudes, and we are interested in how
they are altered.

If we do not have narrow resonances, the Regge
trajectories can no longer be exactly linear, but we
would like to maintain a situation where the real part
of rr(s) is approximately linear in those regions where
particles have been found empirically to lie on straight
lines in Chew —Frautschi plots. We therefore assume that
the trajectory functions satisfy a once-subtracted
dispersion relation (Cheng and Sharp, 1963),

Im (n(s') ]
cr(s) =a+bs+vr '(sp s), ,

— ds', (6.1)
S—S Sp —S)

and that in the low-energy region the contribution of
the integral is small.

In view of the role of dispersion relations in the
derivation of FESR's, we would also like to require that
there exist a region where the amplitude is completely
determined by an unsubtracted fixed variable dispersion
relation:

+ polynomial in Qo.

The quantity we want is the space —space piece of the coe%cient
of 1/Qp,"Some of the alternative models mentioned above have
"good" large Q' behavior, in return for which they acquire other
undesirable features. See Brower, Rabl, and Weis (1970) for a
dIscusslon.

A(s, t) =pr-'
"p Im A(s, t)

dD
Q —I

ds'. (6.2)
s—s
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Pei aR'clc (~) /Pel astlc (p) (6.3)

This degeneracy of total widths makes it impossible
to calculate meaningful phase shifts from this simple
approach. On the other hand, the ancestor problem is
not necessarily fatal since the coupling to these high
spin states is usually small.

B.E-Matrix and Crossing

Clearly, if we intend to take seriously the elastic
widths for resonances predicted by the Veneziano
model, we must have a method of displacing the poles
from the real axis which depends on the angular
momentum structure. A simple way of doing this is the
E-matrix method suggested by I.ovelace (1969a) .
I.ovelace suggests that we interpret the partial wave
projections of the Veneziano model, ar(J, t), as the
K-matrix elements of the physical partial wave projec-
tions, fr(J, t):

f'(J, t) = ~'(J, t)/L1+ p(t) ~'(J, t) 3. (6.4)

Elastic unitarity gives the imaginary part of p(t), in a
channel with mass m~ and m2, as

t (mi —m~) '—
Im p(t) =—,8[t—(mi+m2)'j

t—(ml+ m2)

t (m —m)' 't'—
t (mi+my) '— e[(mi —m2) '—t], (6.5)

This assumes a combination of analyticity and a power
bound and is the generalization of the concept of
atonous duality discussed in Sec. II. If the amplitude
satisfies an unsubtracted dispersion relation, questions
concerning resonance dominance of the discontinuity,
the conjectures of Freund (1968b) and Harari (1968),
and the neglect of Regge cuts in the FESR's can be
discussed after we have constructed a model for the
continuation away from the narrow resonance limit.

A. Comylex Trajectories and Ancestors

Attempts to insert complex trajectories directly into
the Veneziano model (Roskies, 1968; Paciello et al. ,

1969b) generate finite total widths for the resonances
but also result in an infinite tower of spins at each
resonance mass. This is because the residue of a pole in
s, in the model, is a, polynomial in n (t) rather than being
a polynomial in t itself. In general, the integral of Pr, (s)
times some complicated function, not a polynomial, is
nonzero for all L. Resonances with spin greater than
R e ~x(t) are called ancestors.

Another problem is that this simple procedure gives
all poles at a given mass the same total width regardless
of the elastic width predicted by angular momentum
projections. For example, if we give a phenomenological
width to the p-trajectory in the simple m~ amplitude
discussed in Sec. III, then the c resonance will have the
same total width as the p in contrast to the partial
width ratio:

and the real part is chosen by assuming p(t) satisfies an
unsubtracted dispersion relation so that

Re p(t) = (mP —m') ln (mi/mg)

2(mi+m2)' t (m—i—mg)' 't'

~t t (m—+m )'

&& ln + . (6.6)~ ~

t (mi—+m2)' 't' t (m—i—m2)' '~'

4m)mg 4mgm2

This method essentially gives all resonances in the
model a total width equal to their elastic width and can
therefore be presumed to be approximately correct, if
at all, below the first inelastic threshold.

This may be an improvement over simply inserting
complex trajectories in the beta function but the
predictions cannot be completely reliable, even below
the first elastic threshold, if crossing symmetry plays an
important role. If the original narrow resonance
amplitude has crossing symmetry, then the E-matrix
form destroys this property, as can be seen by recalling
that amplitudes satisfying exact elastic unitarity, and
therefore containing no production processes, cannot
simultaneously satisfy analyticity and crossing (Aks,
1965).

In fact, crossing symmetry plays an important role in
determining the low-energy resonance parameters of
the mw system, so that the low-energy E-matrix phase
shifts predicted by I.ovelace (1969a) cannot be com-
pletely consistent. We will return to this question in
Sec. X where we discuss phenomenology.

Arbab (1969) has also proposed a unitarization
scheme based on the form of the Veneziano partial
wave amplitude. He finds unitary threshold corrections
to the reduced residue function of the leading Regge
pole. These corrections destroy the crossing properties
of the model so this method has the same drawback as
the E-matrix scheme and is subject to the same criticism
although the details of the scheme are different.

Balazs (1969) and Atkinson et al. (1969) have taken
an approach where the lowest pole in the Veneziano
model is replaced by a finite cut with a unitary dis-
continuity. This is used as input in an N/D calculation,
where the far-oG singularities are given by the un-
modified Veneziano form. The method is more com-
plicated than the E-matrix approach, but it is not clear
that it is an improvement. More work needs to be done
if this approach is to be evaluated, with the emphasis
on including coupled channels and maintaining crossing
symmetry.

C. Smearing

All the attempts discussed above to unitarize the
Veneziano model are based on rather traditional
methods of calculation and emphasize the low-energy,
elastic unitarity region. Of more immediate interest are
models invented by Martin (1969) and by Suzuki
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(1969) for extending the Veneziano model away from
the narrow resonance limit while maintaining crossing
symmetry and polynomial residues. These methods are
not, in themselves, unitarization schemes but are ways
of removing the outstanding single nonunitary property
of the model, the zero-width resonance.

Martin treats the 8-function discontinuities present in
the Veneziano model with a standard convolution
procedure familiar in distribution theory. He takes the
Veneziano amplitude for 1r1r scattering, Eq. (3.13), and
smears its trajectory slope with a test function, tt)(b),
which is positive and vanishes at the end points of
the integration:

Il p(s, t) = I'(1 a bx—s) I'—(1—a—bxt)
dxy(x) I' Ll —2a—b (s+ t) x]

(6 7)

For a suitable tt (x), the poles in Eq. (6.7) are displaced
from the real axis onto the second sheet. Martin' s
amplitude does not have purely power behavior.
instead, the asymptotic behavior is modified by a
logarithmic factor indicating the presence of a cut in
the J plane. Since it is almost certain that a unitary
amplitude contains Regge cuts, this type of behavior is
certainly not undesirable although, for aesthetic reasons,
it would probably be preferable if the leading singularity
in each channel remained a pole, and cuts only appeared
in nonleading order.

The location of the resonance poles in Eq. (6.7) is
given by the effective Regge trajectory,

n (s) = a+ b (xp+i I') s, (6.8)

where xp and I' are determined by the form of tt (x).
This effective trajectory is not. real below threshold in
s, but the amplitude (6.7) has the correct threshold
behavior so that this is not necessarily an objection to
the smeared form.

Bali, Coon, and Dash (1969a) and Huang (1969)
have developed slightly different smearing schemes.
All these approaches share the Raw that the total
widths continue to be the same for all resonances of a
given mass.

Suzuki's approach to generating finite width reso-
nances is most conveniently expressed in terms of the
integral representation of the beta function. H we
introduce the complex trajectory function Lsee Eq.
(6.1)j

and to guarantee the absence of ancestors, we must
restrict

lim h(s)/s=0
)s(~oo, on 1st sheet

(6.11)

and require that all derivatives of f(s) vanish at
a=0, 1'4:

d"f(z) /ds" ~,=p, i= 0. (6.12)

While Suzuki's model tackles the large unitary
violations caused by the physical sheet poles, in con-
trast to Martin's approach it does not introduce
J-plane cuts but maintains pure pole behavior. Again, it
has the Raw that total widths are degenerate. There is
an infinite class of functions which satisfy the con-
straints (6.12) and each of them generates a slightly
different relation between the pole parameters and the
discontinuity across the cut in the amplitude.

VII. THE NARROW RESONANCE BOOTSTRAP

We would like to review attempts to construct a self-
consistent set of narrow-resonance, hadronic amplitudes
(Mandelstam, 1969b, 1970a, b; Bardakci and Halpern,
1969). The program for this bootstrap scheme is
as follows:

K=i L=0

2L, mK y g(K,y)

K=1
" '

PL (Zy)
x-K

FIG. 7.1. Narrow resonance four-point function for 7r7r—&7r71-

as sum over I'eynman tree graphs with definite internal angular
momentum.

(a) One constructs an infinite set of atonous dual,
crossing symmetric, narrow resonance, Regge-behaved
amplitudes, for arbitrary numbers of external particles.

(b) One imposes self-consistency on the system, in
the form of factorization of pole residues.

(c) The amplitudes constructed as in (a) and (b)
are treated as Born terms of a complete theory. "One
attempts to escape from the unitarity violations of the
narrow resonance model by forming a "Reggeized
perturbation expansion" of diagrams containing closed
loops (Kikkawa, Sakita, and Virasoro, 1969).

In this section, we will discuss steps (a) and (b),

a(s) = a+bs+h(s)
into the amplitude in the form

(6.9) '4 This function can be thought of as the limit

j(z) = lim[8, (M, M)/B(M, M)],

1

p (S t) — dz~a(s) 1+f1(s)f(z) ( 1 S)
—a(t)—1+ts(t)f(1—z)—

0

(6.10)

where f(0) =0 and f(1)=1, we find that, in order to
insure Regge behavior for

~
s

~

—1p(), arg sp(b, 21r—b),

where 8, is the incomplete beta function. See Suzuki (1969) for
a more thorough discussion of the derivation.

'" There is a difference among the practitioners as to whether
one takes the E-point functions to be Born terms in the general
or in the specific field theoretic sense. For the doubting group,
which includes the authors, who look upon the poles of the narrow
resonance amplitudes as bound states, neither meaning makes
sense.
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limiting ourselves to a system of mesons only.
Mandelstam (1970a, b) has extended the discussion
to baryons, and we will comment briefly in Sec. VIII on
some peripheral matters associated with that problem.
We will return to the details involved in step (c) in
Sec. IX.

In order to clarify what is involved in implementing
(a) and (b), we would like to pose the following
unsolved problem, which we will refer to as the "inside-
outside" problem. As emphasized in Sec. III, the general
structure of the narrow resonance model for x~~xw is
such that the amplitude can be represented by an
infinite sum over Feynman tree diagrams in a given
channel as in Fig. 7.1 and Eq. (3.18) .

The amplitude contains internal states labeled
according to (mass)', E, and angular momentum, L,
whose coupling to the n-n. system is given by $c&x]'~',
where cl,~ is defined by

g(E, y) " x c&xpI, (cos 8,)
K=1 & + K=1 L=O

The inside-outside problem is posed as follows:
Treat all internal states in (7.1) as external states, and
form all possible N-point functions consistent with the
original xw amplitude. For example, the ~x—+~+
amplitude contains an internal p state (E= 1, L= 1) .
We can try to form amplitudes for pm —+pm and pp—+pp
consistent with xw~7t-x, and so on for other internal
resonances until the system closes and all states appear
externally and internally for 4 external lines, 5 external
lines, etc. If we could solve this problem, we would
have a set of sV-point functions consistent with (a) and
(b) above, containing all narrow resonance poles
symmetrically as tree poles and as external scattering
states.

The inside-outside problem has not been solved, but
preliminary work seems to indicate that the particle
spectrum will not be free of negative residue states
(ghosts) so that we will have to abandon the positivity
condition used in Sec. III in order to find any solution
at all. The explicit ansatz of Mandelsta, m (1969b) and
Bardakci and Halpern (1969), which we will discuss
below, satisfies conditions (a) and (b), but it neither
solves completely an inside —outside problem nor
excludes ghosts.

The Mandelstam —8ardakci-Halpern ansatz is
formulated in terms of the quark model. It has the
following pathologies:

(1) All trajectories are parity doubled, one partner
being a ghost.

(2) There is an infinity of trajectories with ab-
normal C.

(3) The gr and p mesons are degenerate and the
system does not choose the Goldstone SU(2) 8SU(2)
realization.

(4) Factorization leads to an exponential degeneracy
of the lower lying trajectories.

Fic. 7.2. Quark content of the narrow resonance ansatz of
Bardakci and Halpern (1969). The solid, external lines are
quarks, and the dotted lines are quark —antiquark bound states
{mesons) which form the internal states of the system.

~2N ~2N ~2N~2N) (7 2)

where T, 5, and 8 are the isospin, ordinary spin, and
orbital factors, respectively. " The resulting mass
spectrum can then be classified by SU(6, 6) C30(3)
and the vertices by SU(6) s .37

We will consider here only the meson bootstrap, in

'" The reader may find it instructive to consider in this connec-
tion the result of trying to bootstrap the bound states of posi-
tronium in this manner, keeping only Feynman diagrams with
multiphoton exchange, just as in the eikonal approximation of
Abarbanel and Itzykson (1969), Chang and Ma (1969), and
Levy and Sucher (1969).

3' In other words we have a spectrum-generating algebra. See
Dothan, Gell-Mann, and Ne'eman {1965).

(5) The model requires unobserved trajectories.
(6) The structure of the resultant amplitudes leads

to an indefinite metric, and to two different infinite
families of ghosts.

Diseases (1), (2), (4), and (5) are probably intrinsic
to the narrow resonance bootstrap. Disease (3), which
ruins soft pion applications, may be a particular
property of this ansatz only. It would be interesting to
see if the inside-outside problem allows a solution with
mq)m and m =0. Disease (6) arises, as we shall see
below, from the haH-integral spin of the quarks used
as meson building blocks, plus the rather ed hoc con-
struction procedure, and also from the forcing of
factorization.

The actual construction procedure is to separately
solve the problems of internal symmetry, ordinary
spin, and orbital angular momentum, and then present
the final result as a product of three factors. This
procedure enables one to carry through (a) and (b) in
a manner which is interesting and illustrative, but
probably unphysical. The separation of the spin and
orbital factors, in particular, does not occur in any
known set of Feynman diagrams, say in quantum
electrodynamics, and results in an indefinite metric,
as in (6) above.

Specifically, we consider a 2N-point function, where
the external lines represent A" quarks and N antiquarl-s
and write the total amplitude as
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FIG. 7.3. Factorization of SU(3) factor T2~ in (7.2). The
dotted lines represent the internal meson states in the narrow
resonance ansatz.

which the amplitude A~~ can be thought of in the form
of Fig. 7.2, in which each quark —antiquark pair forms
into a meson, and at the end the quarks are thrown away
leaving the amplitude we want. The extension to
baryons has been considered by Mandelstam (1970a);
for a discussion we refer the reader to his paper and
to that of Olesen (1970a).

A. The SU(3) Problem

The original solution of this problem was given by
Chan and Paton (1969). We will follow here the
arguments of Bardakci and Halpern (1969). Each
external line in Fig. 7.2 is to be associated with a quark
wave function which factorizes as above into internal
symmetry, spin, and orbital pieces. Choose SU(3)
as the internal symmetry and call that part of the
quark wave function x(i), where i labels the quarks.
We will consider mesons only and will force the particles
to transform as 168 under SU(3) with 3 and 3* being
the quark and antiquark representations. If we form
the quark —antiquark 3&&3 matrix x(i)x~(i), we can
write

(7.9)

In (7.9) the trace is over the Dirac space. The meson
"propagator" is then

54 = 5152+P1P2+P1P2+ ( Vp) 1(Vp) 2 ( Vp) 1 ( Vp) 2

—(U„)g(U„) ~
—(A„)~(A„)2, (7.10)

which contains the following set of trajectories:

o++(5), o +(P), 1 (V), 1 (V), 1+ (U),

a.nd 1+ —
(A.),

where J~~ labels the quantum numbers of the lowest
particle on the trajectory. Let (q„);=q„(2i)—q„(2i—1)
and let m be the quark mass. Then we have

(q.) *(V.)'=o= (q.) *(U.)', (7.11)

(7.12)(qx) '(A~) '=o
We use the usual names {I'I = {5,P, T, A, VI, and the
associated quantities 3, U, V, P are defined by

(A„),= (u2 )y y„u'(2i 1) =—(U„),+[2m(q„),/q']P;,

B. Spin Structure

We take for the ordinary spin wave function of the
quark, the Dirac spinor u(i). By analogy with the
above we define

(5„);=u(2i) (I'~) u(2i —1), (7.8)

where the I'~ are the 16 Dirac matrices, and the spin
factor becomes

x(i)x (i) = Q [x(i)X.x (i)]X

in terms of the nine X 's of Gell —Mann (1961).
Now, defining the coefficients as

(C'-) '= x'(») (~-) 'x(» —1),

where there is no sum on i, the isospin factor is

7»= » {II(c' )'(~ )'I.
i=1

(7 3)

(7.4)

(7.5)

(7.13)
(2'") '= [1/(q") "']{(q.) '(V.) ' —(q.) '( V.) '

+ie„„gp (q),),(A p);I, (7.14)

(V.) '= L(q.) ~/(q") "'](2'..) *, (7 13)

and

P, = [1/(q ') "']u (2i) &5q,u (2i—1) = [2m/(q, ') ""]P;.
(7.16)

The choice of indices in (7.4) tells us that. (7.5) is
cyclically symmetric in the hadron labels i. At a meson
pole (C ),=1, and all this boils down to

To complete the argument we need the identity in

TABLE 7.1 Leading trajectories in narrow resonance
dual quark model.

T,~= Tr [Q X,.], (7.6)
JP Ghosts?

where the ith meson has SU(3) index n, .
The expression (7.6) factorizes properly because of

the identity between arbitrary SU(3) matrices,

Tr (AB) = g Tr (AX ) Tr (X 8), (7.7)
o.=o

which just tells us that the SU(3) amplitude can be
written as in Fig. 7.3. Now we pass to the spin problem.

p+
p+

0
0
1

1
1+
1+

Yes
Yes
No
No
No
No
Yes
Yes
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Dirac space,

Tr (AB) = P Tr (AF ) Tr (I'„B) (7.17)
3 4

projecting out definite spins as above. This object is
found to contain the trajectories listed, plus two more
which do not explicitly appear in the 4-quark amplitude:
(a) an extra pion trajectory coupling as &5q/q; (b) an
abnormal scalar trajectory coupling as q/q, arising
from the divergence of the y„ term.

Explicitly writing out (7.17), with

Lq„(A ) q (A) /q' (A) ], we have

3 4

(c)

(c)

Tr (AB) = Tr (A) Tr (B)+ Tr (Ay5) Tr (y5B)

+ Tr (Ap„,) Tr (7~ B)
—Tr (A ~ q(A)/q(A) ) Tr (q(B)/q(B) B)

—Tr A
" Tr 8

(Av, q(A)) (v,q(B)B)

Ao.„,q" A 0&~q), 8 8

Ay. cr„„q"(A)-y5o&"qi, (B)B
(

—Tr Tr 7.18
q(A) q(B)

where we imagine we have a scattering process with two
blobs, A and 8, connected by an internal line carrying
momentum q„(A) = —q„(B), with q(A) =q(B) =
$q'(A)]'~'=[q'(B)]"' being the mass of the object
exchanged between A and B. The decomposition
(7.18) explicitly resolves the amplitude into pure Jpc
pieces, where J=O or 1.

Now, to finish off this discussion, we want to identify
the ghosts. The proper Feynman vertices (Bjorken
and Drellt, 1969) for the particles under consideration
are, for S, P, V, andA,

I
—i, q/q), (v, v qiq), I

—'(v, —q.q/q'), "q"/qI,

and f i (p&y„—q„&5q/q—'), i&&o „,q—"/q I, (7.19)

respectively. If we square the phase factors and com-
pare with (7.18), we have the final list of trajectories
shown in Table 7.1. As can be seen there, an infinite
family of ghost trajectories has appeared.

There are two x and two p trajectories in this model.
In principle, they are identical pairs. If we introduce
two mixing angles, 0 and 0„ into the system, there is
a choice of 8 and O„used by Mandelstarn (1969b),
which turns out to force precisely SU(6)ir symmetry
for the meson —meson-meson vertices.

C. The Orbital Factor

To complete the discussion we need to find an
amplitude which will serve as the orbital factor in

Fio. 7.4. The five different planar I.'eynman tree diagrams
possible for a given ordering, 12345, of five particles.

(7.2) . This clearly is the same problem as the construc-
tion of a 2N-point function for scalar particles since the
spin has been factored out as above. We will now discuss
the problem of directly generalizing Ueneziano's four-
particle form (Veneziano, 1968) to M particles. The
solution of this problem yields an amplitude, B~, which
we will use in (7.2) for iV = 2X.

The structure of the orbital problem is more complex
than the spin and internal symmetry problems because
many nontrivial constraints are involved. The first step
in its solution occurred when Bardakci and Ruegg
(1968) and Virasoro (1969a) generalized Veneziano's
model to five particles. Chan (1969), Goebel and Sakita
(1969), and Koba and Nielsen (1969) then extended
this form to the case of X external particles.

To discuss this generalization we restrict attention to
an idealized system of neutral bosons which can later be
interpreted as spinless quarks for the purpose of the
bootstrap. This system is defined by one parent Regge
trajectory, the lowest member of which is a massive
particle of spin-parity JP=O+. The parent trajectory is
therefore restricted to have a negative intercept. We
will first explain the concepts of planar diagrams, over-
lapping channels, and the necessity for particle ordering.
Next, we will construct B~, an explicit, nonunique,
example of an iV-particle narrow resonance amplitude.
We will examine the multi-Regge limits of B~ and its
factorization properties and, finally, discuss its use in
the bootstrap scheme mentioned above.

(i) Planar Diagrams, Overlapping Channels,
and Tree Diagrams

To define the model for the scattering of Ã of these
spinless particles we are going to construct functions
with the singularity structure of planar Feynman tree
diagrams. That is, planar diagrams with three particle
vertices and without internal loops. Figure 7.4 shows
the different Feynman tree diagrams which will be
present in the model for a given ordering of five particles.
The ordering of the particles is crucial since for a given
ordering planar Feynman tree diagrams can be con-
structed with poles in each of the planar Mandelstam
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FIG. 7.5. Example of a Feynman tree diagram which is non-
planar for the ordering 12345 of the external particles, because of
the pole in (p3+p5) 2. The diagram would be planar if the external
particles were ordered 12435.

a;, =a+bs;;, (7.22)

we want a generalization of the integral representation
of the beta function

(ii) The X Poi-nt Function BN

We now turn to the problem of writing a narrow
resonance function which has poles in all the channels,
(7.20), which are planar for a given ordering of the
external par ticles. Defining the linear trajectory
function

invariants
sjj= (pi+phyl+ ' ' '+pj) (7.20) B4(pb p&~ p3) p4)

1

Jgg—&12 1(1 g) —23 —1 (7 23)

but planar tree diagrams do not have poles in such moe-

planar channels as (P2+P5) ', (pi+ p3+p4) ', or
(p, +p,+q)'. To have poles in nonplanar channels we
need diagrams such as shown in Fig. 7.5. These diagrams
can be made planar by changing the order of external
particles. Complete crossing symmetry for a system of
0+ particles demands singularities in all these channels,
and this suggests we make the decomposition

0

which we will identify with the 4-particle scattering
amplitude (Veneziano, 1968) .

In analogy to the situation in the four-particle model,
the integral representation for the amplitude, BN, can
be constructed by considering an integration variable,
x;;, "conjugate" to the trajectory u;;. We guarantee that
there are no simultaneous poles in overlapping variables
by requiring

T(p&) ' ' 'i p&)
a'(N —1) l

B~(p,„~~ ~, p;„), (7.21)
(7.24)

nonequivalen t

pertnutat ~ons

(z1, ."4)
where cyclic and anticyclic permutations of the ordering
of the particles are considered equivalent. All available
channels will be planar in one of the orderings in (7.21),
and T(p&, ~ ~, p&) will be completely crossing sym-
metric.

In analogy to the case of the four-particle amplitude
discussed earlier, we want the residue of a pole in a
channel invariant, s;, , to be a polynomial in the over-

lapping variables which are related to the cosine of the
scattering angle in that particular channel. The enu-
meration of these overlapping variables is not com-
pletely straightforward for the case of E particles.
Basically, overlapping variables are those Mandelstam
invariants in which Feynman tree graphs cannot have
simultaneous poles. For example, for a four-point
function both 7 and I overlap s. Another definition of
overlapping variables involves the use of dual diagrams.
These dual diagrams have nothing to do with duality
as preached by Dolen, Horn, and Schmid (1968), nor
are they the same as the duality diagrams of Harari
(1968) and Rosner (1968), with which they share a
confusing nomenclature. Rather, these dual diagrams
are those discussed, for example, by Eden, et al t(1966).
in connection with Feynman diagrams. They are con-
structed from Feynrnan diagrams by enclosing each
Feynman vertex by a polygon, each side of which is
identified with one of the lines entering the vertex.
Fig. 7.6 illustrates the one-to-one correspondence of
the diagonal lines in these dual diagrams with the
Mandelstam invariants. Variables are then said to be
overlapping if the diagonals corresponding to them
cross.

where I' is the set of channels which overlap s;;. Any
set of N —3 nonoverlapping variables can be chosen
independent. The most convenient set of independent
variables corresponds to the poles in the multi-
peripheral diagram, Fig. 7.7(a):

I& =XI&. ( j=2, ~ ~ ~, E—2). (7.25)

In terms of the I;, the solution of the constraint
equation (7.24) is given by (Chan and Tsou, 1969)

(1—u; ~ u; i) (1—u; i ~ u, )xU (1—u, ~
~ u, ~) (1—u,' ~ u, )

and the X-point function is then given by"
1N—2

BK(pl' ' ' PN)
0 /=2

(7.26)

N

3 The singularity structure and asymptotic behavior of 85 were
first discussed by Dixon (1905).

FIG. 7.6. Dual diagram for X-point function. The external
lines represent the skeleton. The two diagonal lines represent the
channels s14= (pl+p2+p3+p4)' and s2, ~ 2= (p2+ ~ - ~ +p~ 2)'.
Since the diagonals cross, the channels they represent overlap
each other. Examples of channels which do not overlap s14 include
(p2+ p3) and (p'+ p6+p7)
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where
&1= II (*';) '-' (7.28)

i&j

This integral representation of the B~ function
clearly indicates that it is invariant under a cyclic or
anticyclic permutation of the particle indices and that
the only singularities of the function are poles at
integral values of Regge trajectories u,;. A convenient
form for discussing the other properties of B~ which
combines (7.26)-(7.28) is the recursive definition
'(Bardakci and Ruegg, 1969): N-I

(a)

~N(P1' ' 'PN) du2 ' ' ' duN 2IN (u—21
' ' '1 uN —2) 1

(b)

(7.29)
where

IN(u2, ' '
.', uN 2) =u2 (1—u2) (1—u2u3)

X ~ ~ ~ (1 u2 —'uN —2) ' N 'IN i(u-» ~ ~ ~, uN 2) (7.30)

and

FlG. 7.7(a). Multiperipheral Feynman diagram for an N-
particle amplitude. Internal poles occur in the channels s12,
s13, ~ ~ ~, s1~ 2. (b). Dual diagram for (a) showing that the
channels s12, s1&, ~ ~ ~, sf~ 2 do not overlap. For each channel, .

s1, , we introduce the integration variable n, to define the integral
representation of BI;.

Making the change of variables (Bardakci and Ruegg,
1969)

~'1 = (n'3 n'+1, 1)—(n', 1 1—n*+1 -1
—1) (. 7-31) 1—u;= exp (s,/n, , ;+1) (i=2, 4)

There is no claim that the form (7.29) is a unique
solution to the problem of the lV-par ticle narrow
resonance model. The complete problem of uniqueness
has not been solved, but, in analogy to the case of the
four-particle amplitude discussed in Sec. III, it is
always possible to multiply the integrand in (7.29) by
an arbitrary function which is symmetric under a cyclic
permutation of the channel invariants and well behaved
in the region of integration, the pole structure being
determined by the end-point properties only. "

The —2,X(X—3) channel invariants which appear in
.(7.29) are not, of course, all independent for X)6,
but the model is presumed to hold for the physical
amplitude when the momentum conservation and mass
shell constraints are used to reduce the independent
channel invariants to the usual number 3X—10. As
discussed in Sec. V, this feature is of great importance
when one tries to construct amplitudes for external
currents.

—1+s;/n;, ;pi, (7.35)

taking the high-energy limit under the integral sign in
(7.29) in the form

lim (1+o/n) = exp (o),
a~ oo

(7.36)

X dS2dS dS4S2 12 lS3
—a13 1S4

—a14—1

0

S2S3 S3S4 S2S3S4
~ exp — s,+s,+ —+ —+ (7.37)

K2 K3 K2K3

We can also see that the contribution of each trajectory
to the multi-Regge limit factorizes separately by
writing (7.37) in the form

and making use of the high-energy approximation
e;;, we get

(n23)12( —n34)13( —n43)14

(iii) Properties of BN

The Regge asymptotic limit of 8& can be checked
with the aid of (7.29). A new ingredient enters when
several kinematic variables go to infinity together.
This is called the multi-Regge limit (Bali, Chew, and
Pignotti, 1967) . For example, for 83 we can consider

(n131 n141 K3) I (—n14) L
—n43]"4. (7.38)

The function V(n, n, K), which can be identified with
the vertex for two Regge trajectories (Reggeons) and
an external pole, is then

and

$23~ M $34~ 00 $45~ QO

s12, s13, s14 constants,

(7.32)

(7.33)
S1S2

dsi ds2zi s2 exp — si+z2+—
K

$23$34 $24 K2 ) &34&43/&33 = K3, constants. (7.34)
(7.39)

Presumably the factorization properties and therefore the
degree of degeneracy change rather radically if one changes the
integrand in the above fashion. See Frampton (1969b).

The variable ( —1/K) in this vertex function is identified
with the Toiler variable (Toiler, 1965) of Bali, Chew,
and Pignotti (1967) . Dependence upon the Toiler
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= (P+P )
P

P5

plicated spin projections can be made with the aid of
the series representation for 8& found by Hopkinson
and Plahte (1969). For example, the series form for B,

B5(pl' ' ' p5)

I'IG. 7.8, An illustration of the process of finding the pole at
a12 ——1 in B6 in order to construct the amplitude Pt"A„(P, p3,
p4, p5, p6) for the coupling of a spin one particle to four scalars.

variable was often assumed to be absent in early
studies of the multi-Regge limit and the Veneziano
model was among the first to predict a definite de-
pendence on this variable. This dependence has not
been verified phenomenologically as yet (Barshay,
1969; Tan a,nd Wang, 1969).

The multi-Regge behavior of BN given by (7.37)
does not necessarily guarantee that the complete

amplitude, (7.21), which is a sum over BN's, will have
the proper Regge behavior. We must also show that
8& is exponentially decreasing when we fix a nonplanar
channel invariant in which it has no poles, just as was
the case for an exotic channel in the four-point ampli-
tude in Sec. III. For general E, the nature of the
constraints which reduce the number of variables
from —,'1U(1U —3) to 31U—10 makes proof of this property
dificult and we are not aware of the existence of any
such proof, See the discussions of Bialas and Pokorski
(1969) and of Zakrzewski (1969).

(iv) Factorisatiort artd Proj ectioms

Factorization of the leading trajectory ensures that

&lj BN (ply ' ' '
) pN )

cr] j~0

B'+1(pl p, , pr) BN (pr, p ' ' ' pN—), (7 40)

which can be verified by noting that, in the limit I,—+0,
the integrand in (7.29) separates into the appropriate
factors. We can also project out couplings to resonances
of nonzero angular momentum on the parent Regge
trajectory in order to define amplitudes for particles
with spin. (See Bardakci and Halpern, 1969; Campbell,
Olive, and Zakrzewski, 1969.) For example, in the
6-point function, the residue of the pole at n~~=1 can
be used to construct the invariant amplitude for the
coupling of the spin-1 particle on the parent trajectory
to four scalars. Using the notation of Fig. 7.8 with I'I'=
p,&+P3& and n» ——a+ b(P+ p, ) ', 4 5a4+b(P+ p,+p4)

——',
we write

= Z ( —1) l lB4(~34)~45+t)B4(&»+~, ~33))
5=O ( p )

(7.42)

where s24=n24 —+34 (x/3 can be used in conjunction
with the expansion of the beta function to yield

oo ~24 &23

B5(pl" p'-) = 2 2 (—1)"+'I
5=0 I,=O

k ~ ) E I

(7.43
B4 (4334) 4345+ t5)

n»+t5+—L

This illustrates explicitly the Feynman diagram
structure and the couplings of the model and can be
used to verify the generalization of atonous duality
(Sec. II) appropriate for the 6ve-particle form. These
considerations of factorization are relevant to the
problem of uniqueness. Although (7.40) provides some
constraint, there still exists the possibility of multiplying
the integrand in (7.29) by a function which preserves
the factorization property. The class of such functions
has been discussed by Gross (1969).

So far we have just discussed factorization in terms
of leading behavior and poles on the leading trajectory.
Since factorization can be thought of as a form of
single-particle unitarity which can lead, in principle, to
important constraints, it is interesting to try to extend
the factorization property to particles lying on daughter
trajectories.

At the daughter level, simple factorization does not
exist. Instead, it has been shown by Bardakci and
Mandelstam (1969) and by Fubini and Ueneziano
(1969) that, in order to preserve factorization, the
lower levels must become degenerate so that the
residue of a pole can be expressed as a finite sum of
factors which does not depend on the number of
external lines. Because of the cyclic symmetry of 8&,
we need only establish this property for one channel,
s;,. Looking at the integrand in (7.29), we see that only

P"rf.(»P3 P4 P P5)

=2bP"Ep3lB5(r3» 5334, n34, n45, —2b(p, p..) )

+P4„B,-(43»—1, c3,4, 5334, c445, —2b (p3 p, ) )

p5„B5(o4» 1—, n» —1, a34—, o.45,
—2b(p3 p;) )j, (7.41)

where B5 is the five-point amplitude of (7.29) with the
order of the variables given by that integrand and with
certain trajectories lowered as indicated. More com-

$' IG. 7.9. The residue of a pole at a+A (p1+ ~ p, ) ' =n can be
repreSented aS a Sum Of termS &I;C&(pl. ..p&) .Djc(p~+1' pe)
where CI, depends only on p1, ~ ~, p; and Dt-„on p;+1, ~ ~, ptU.
As can be seen from the diagram, we are restricting attention to
only one ordering of external particles in making this decomposi-
tion.
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a certain number of factors contain the variable I,.
We make the constraint i(j(k and let Ii(uz, p, ) be
those factors in (7.29) which involve only variables in
the left half of Fig. 7.9 and I2(ui, pi, ) be those factors
which contain only variables on the right half. If we
then lump all those factors which have any n, de-
pendence into F(u, ; u;, p;; ui„pq), we see that we can
write the residue of the pole in (7.29) at o.i; =n as

du, dui, ji(u, , p, )
i(j'&/

8
XI2(u., p.) (»!) ' P(~, u,p„»P.) l.=o. (7.44)

The function, F, can be written in the form

P m.f =n.
m=1

(7.46)

as
For large 1z this number, d„, increases approximately

d„exp [2m (u/6) '"j (7.47)

so that the level degeneracy increases exponentially
with mass. "Curiously enough, this is the same sort of
structure predicted by Hagedorn (1968) on the basis
of a thermodynamic model which treats hadrons as
bound states of each other, in terms of a statistical
ensemble depending on a universal temperature. It is
interesting that two very different models which lay
claims, however tenuous, to being bootstrap models
should predict the same sort of degeneracy in the hadron
spectrum (see Krzywicki, 1969). There remains the
problem of exposure of this prediction to experiment.
However crowded the experimental hadron spectrum
may seem (Rosenfeld et al. ,

* 1969), there is as yet no
evidence for this sort of multiple structure. If this type
of degeneracy really existed, resonances would have
decay modes whose properties depended on their
production mechanism, and we are not aware of

' The quantity d,. is called the partition number by Fubini
and Veneziano (1969). See their paper for further details,

5)F= exp P —LPi"(p, , u', r)P2"(pk, uk, «)+e(r)]
r=l

(7.45)

where c is a constant and Pi&(P2I") is a four-vector
depending only on the variables p, and u, (pi, and u&).
The derivation in (7.44) can be verified by expanding
P in a power series in m and isolating the term with
power m". The number of factors depends only on the
functional form of Ii and not on the specie. c form of
Pi(P, , u;, r) and, therefore, does not depend on the
number of external lines. The number of different
factors can be shown to equal the number of ways of
choosing nonnegative integers f to satisfy the partition
equation

experimental evidence for the lack of simple factoriza-
bility of any known resonance. These questions can be
circumvented in two ways. One can claim that experi-
ments have not yet probed energies at which these
features become prominent. It then becomes necessary
to revamp the basic notion of what a particle is.
Alternatively, we can ignore the properties predicted
by the model for lower trajectories on the ground that
these trajectories are mimicking the effect of back-
ground in a true amplitude. Since many of the lower
trajectories have negative residues, thus providing a
set of ghost states entirely distinct from those asso-
ciated with the spin structure discussed in Sec. VII.B,
the latter approach temporarily avoids confrontation
with the di%culties associated with ghosts, at least
those of this second kind. Neither of these escapes
appeals to the authors, and in fact we see no reason to
believe the detailed resonance spectrum of the model
either at the parent or the daughter level. 4'

There exist identities, called "Ward identities" by
Fubini and Veneziano (1969), which indicate that
certain hnear combinations of the states counted in
(7.46) correspond to functions which are total deriva-
tives of one of the u; or I/, so that the integration in
(7.44) causes the contribution of these states to vanish.
The total reduction in the degeneracy, (7.47), for large
e caused by these identities is negligible, but they can
be used to show, for instance, that some states which
have negative residues (ghosts) are compensated by
similar poles with positive residues (Fubini and
Veneziano, 1969; Bardakci and Ma.ndelstam, 1969) .

The level structure of the Beta function form has
been studied extensively in terms of a harmonic

o.~ ——a~+b(Z P;)',

we can write

&n(p', -",p~) = (o
I &(px-i) &(~~-)".&(~2) &(p ) I o),

where

and

D (g) = dxg &+H l ( 1—g) &

0

l/2 l/2
2b 2b

V(P ) = e p —Z — at(")p e p r, — a&")p
n=l n=l @

"The second set of ghosts in the orbital factor and its associa-
tion with an indefinite metric are best seen using the oscillator—
operator formalism of I ubini, Gordon, and Veneziano (1969).
The problems associated with these ghosts are presumably
identical to those encountered by Lee (1969) and Lee and Wick
(1969). In terms of the operator formalism, the field operators
satisfy the indefinite metric commutation relations

(n) & f(m)] —g

The timelike oscillator operators therefore create infinities of
both normal and ghost states. In terms of these harmonic oscillator
operators, the total energy is given by

g nat (n) a(n)
n=l

If, as before, we define
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P, P as discussed by Chew and Pignotti (1968) and Chew,
Goldberger, and Low (1968).

FIG. 7.10. Vertex function for
coupling of particles on leading tra-
jectories having spins J1, J2, and J3,
as computed using 86.

oscillator model, (Nambu, 1969; Susskind, 1969, 1970),
and an operator formalism has been developed by
Fubini, Gordon, and Veneziano (1969).4' These studies
are suggestive in that they indicate a connection
between the model and infinite-component field theories
and they may provide a connection between the nega-
tive residue states and other features, such as asymp-
totic behavior of the model. In particular, the operator
formalism can be used to isolate vertices between the
factorized excited particles in the model (Sciuto, 1969;
Stapp, 1970). It can also be used to invent twisting
operators (Amati, Bellac, and Olive, 1969; Caneschi,
Schwimmer, and Veneziano, 1969) which can be used
to define the signature of internal states. (See also the
discussion on signature by Hopkinson and Chan, 1969;
Zakrzewski, 1969.)

As discussed by Gross (1969), these factorization
considerations have some bearing on the problem of
the uniqueness of the Bz. The number of levels in-
creases, in general, when the integrand in (7.29) is
multiplied by a function f(N2, ~ ~, 245( 3), but it remains
finite for a large class of functions. This suggests that
the level structure, given by (7.45), is in some sense
minimal (Olesen, 1970a), but the situation is not
completely clear.

(v) An Im portant Simptifbcation

For many applications, the full form of 8& is un-
necessarily complicated and it is desirable to use an
approximation invented by Bardakci and Ruegg (1969)
in which all factors in the integrand in (7.29) con-
taining more than two u, 's are omitted:

(1—24,24,+124„+2. ~ ~ 24,+„)~1 in (7.29) . (7.48)

For large cV this can simplify the integrand in (7.29)
considerably. For example, in this approximation we
would write the six-point function as

fd242dg3 d244242
—a12—113 a16 114 a14

X (1—242) " '(1—243) " '(1—N4) 4'

~ (1 24 24 3 2b(&2 &4)+a+5m—2('1
24 24 3 2b(&6 6'6)+a+bm—2~

2 I, 4'j

(7.49)

which is a good approximation of the original six-point
function in the multi-Regge limit, (7.37), and can be
used in schemes based upon the multiperipheral concept

&4""'(P P6 P» P3)-, (7 5o)

where ~ indicates (7.50) holds only for the highest
internal trajectory, u() ——42I (P1+p2+ p, +p4) '],
84&'~& is the amplitude for the coupling of four scalar
particles to a spin J object. The symbol (3 indicates
that the J indices of the 84("(s), represented by y, (J),
have to be dotted into each other. For additional
details the reader is referred to Bardakci and Halpern
(1969).

For reference, we give the form of the triple-Regge
vertex obtained from 85 by Misheloff (1969).Let the
momenta be as shown in Fig. 7.10, with

EA c6355651/4261& EB 42134235/c245 ) EC (2515213/(223.

(7.51)

The asymp«tic f»m of &«s
I s1I I

s3
I 1»3 I

~~
with Eg, E~, and E~ fixed is

Bb~ ( —42.1)a16 ( —(2,r) a66 ( —421 ) a64

XG(s12, s34, s55,
' Eg, Eo, Eo), (7.52)

where

G($12) s34) $56) Eg) EQ) Eo)

dV1dV2 dV3V1 +12 V +56 1V +34

V1V2 V2V3 'VgV1

X exp —v1—v, —v,+ —+ —+ —. (7.53)
Eg Egg Eg

Additional material relevant to this section can be
found in Amati, Bellac, and Olive (1969), Barshay
(1969),Delbourgo and Rotelli (1969),Freund (1969b),

Application to the bootstrap problem

To finish the bootstrap problem, we will use 82~ in
(7.1) as the orbital factor. From what we have said,
this is a self-consistent choice in the sense of factoriza-
tion, provided one is willing to live with the exponential
degeneracy of the lower levels.

To form a four-point function in the bootstrap we
need to consider A8, the four-quark —four-antiquark
amplitude pictured in Fig. 7.9. Rather than repeating
the details of previous arguments, we will very briefly
show how 2 8 breaks up, following Bardakci and
Halpern (1969).

The spin and 5U(3) parts of A3 factorize easily, as
seen from Eqs. (7.6) and (7.16), and we focus on the
orbital factor 88. Suppose we check that 88 breaks up
as in the tree diagram Fig. 7.9. As we have discussed
above, there are problems associated with the fac-
torization of the lower trajectories. I.et us examine the
leading internal trajectory. Then it can be shown that
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lim [B/A =0, C/A =Oj, (8.4b)

Frye (1970), Gallardo and Susskind (1970), Kugler To make this result independent of channel we also
and Milgrom (1969), Landshoff and Zakrewski require
(1969), and Susskind (1970).

VIII. NARROW RESONANCES, THE POMER-
ANCHON) EXACT AND BROKEN DUALITY,

AND EXOTIC RESONANCES

In this section we will discuss the absence of high-
energy elastic diffraction phenomena in dual, narrow
resonance models, the consequences of exact duality,
and the presence of exotic resonances.

lim [A/C=0, B/C =0j.
taboo, u=0

(8.4c)

Focusing on the s-channel, we can see what the trouble
with implementing (8.4) for the narrow resonance
model is. The invariant amplitude B(s, t, u) is sym-
metric in s+-+u so that

A. The Pomeranchon and Exotic Resonances X" -+ —1 f(u) (8.5a)
Our narrow resonance amplitude, in its present form,

cannot describe elastic high-energy diffraction scat-
tering. We will show the reason for this using the
example of me. scattering. Traditionally (Chew
and Frautschi, 1961; Frautschi, Gell-Mann, and
Zachariasen, 1962), these phenomena have been
associated with a Regge trajectory called the
Pomeranchon. However, as has been recently pointed
out with increasing frequency, it is not at all clear from
the available data that such a description is appropriate
(see Trilling, 1970). According to the Pomeranchuk
conjectures (Pomeranchuk, 1956; Pomeranchuk and
Okun', 1956; Pomeranchuk, 1958), at high energy,
elastic cross sections are supposed to become in-
dependent of isospin.

For the ~ir isospin amplitudes, (3.8), this means that

(8.1)

Because of our choice of SU(2) solution, with no I=2
poles, (8.1) does not hold in the model described in
Sec. III; instead we have

and similarly

(8.5c)

In the s channel, 8 dominates in the forward direction
and C in the backward direction. We can draw a
Mandelstam diagram with the asymptotic behavior for
the 8 amplitude superimposed as in Fig. 8.1.

Now, suppose we want to make a narrow resonance
model for ~m.—+a~ with no I=2 poles and with the
Pomeranchon included as an ordinary Regge trajectory,
so that

(&Aa 1) P(1—a) (bs) . (8.2)

I' 1
s~ oo, f ixed t

1

+1giwa~(t)
~"""P~(t) (8.6)

sin m.np(t)

A,' 3A 8 C

Xs

A,' 8 C

(8.3)

In order to have (8.1), we need

lirn [A/B=0, C/B=0].
shoo, t=0

(8.4a)

To see what is happening, consider the usual invariant
amplitude decomposition, (3.1), for the full arm ampli-
tude. The isospin amplitudes are given by

According to the narrow resonance rules, the directions
marked I' in Fig. 8.1 are to be associated with t-channel
poles, while by excluding I= 2 poles we know 8 has no
s- or I-channel singularities and the directions marked
"0"in Fig. S.i therefore indicate an exponential falloff.

iso such meromorphic function exists. In order to
get the Regge behavior, (8.6), we must have an infinite
number of poles in either the s or I channels, as dis-
cussed in Sec. II, or we must go beyond narrow reso-
nances and introduce cuts (Jengo, 1969) .

Therefore, in order to have a narrow resonance
Pomeranchuk trajectory, we must allow I=2 poles.
This has been suggested by Wong (1969a), who also
pointed out that the I=2 trajectory may have a large
negative intercept, so that the exotic poles (I=2)
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FIG. 8.1. Asymptotic behavior of the invariant amplitude
B(s, t, I), defined as in (3.1), for 7i.m. scattering, as required if
the Pomeranchuk limit (8.1) is to be satisfied.

appear at arbitrarily high mass. We do not find Wong's
suggestion particularly attractive, because it does not
seem to solve any problems associated with the
Pomeranchon in classical Regge pole treatments
(Berger and Fox, 1969; Fox, 1969; Jackson, * 1970;
Trilhng, 1970) . We will discuss this further in Sec. X.

B. Exact Duality

As pointed out above, the narrow resonance model
satisfies atonous duality, in the sense that the infinite
sum of poles in one channel diverges to produce cross
channel poles. This form of exact duality, in which
amplitudes can be represented as Reggeized sums of
Feynman trees, necessitates the presence of "exotic"
resonances, in certain baryon-antibaryon annihilation
channels. (We define the following as exotic: rnesons
outside 1 or 8 in SU(3); baryons not belonging to
1, 8, or 10, or having baryon number larger than one. )
The necessity for the appearance of exotics was first
pointed out by Rosner (1968).

We will discuss below meson —meson, meson —baryon,
and baryon —baryon scattering, and will indicate the
general form that self-consistent solutions to the
SU(3) crossing problem must take. Readers interested
in more details are referred to the work of Rosner
(1969b), Rosner, Rebbi, and Slansky (1969), and
Mandula et al. (1969).

The most elegant way to see that exotics are needed
is to use the duality diagrams" of Rosner (1969a) and
Hara, ri (1969), which are pictorial ways of writing
SU(3) crossing matrices for X-point functions whose
legs transform like 3 or 3* under SU(3) . In the usual
language, each line in a duality diagram represents an
ace-quark (Gell —Mann, 1964b; Zweig, 1964), and if
we look at 2$ point functions having X external

'2 We emphasize that these duality diagrams are not the dual
diagrams connected with the singularity structure of Feynman
diagrams.

(a)

B ~B

(c)
~8

d)

FIG. 8.2. Duality diagrams for (a) meson —meson scattering
with nonets in both channels; (b) meson —baryon scattering with
baryon exchange in one channel and meson exchange in the other;
(c) meson —baryon scattering with baryon exchanges in both
channels; (d) baryon —baryon scattering showing meson exchange
in one annihilation channel and exotic qfjqq exchange in t:he other.

4' Caution is necessary in interpreting duality diagrams so
as to give definite results regarding 5U(3) crossing matrices.
For example, straightforward symmetrization of quark lines can
easily lead to incorrect conclusions. We are indebted to J. Man-
dula for pointing this out to us.

quarks and E external antiquarks, we can decide, for
1V meson scattering, which eigenvectors of the SU(3)
crossing matrices with eigenvalue one, are allowed. 4'

In terms of the discussion of Sec. VII, it is always
possible to write an A-point function as the sum over
products of an internal symmetry factor and an or-
dinary space factor. In VII we went even farther and
factored the ordinary spin piece into orbital and spin
terms. This last factorization is not required by any
physical principle, and probably has nothing to do with
reality. From the duality diagram point of view we
consider the internal symmetry factor only, and this is
perfectly legitimate.

The quarks in duality diagrams therefore have
SU(3) quantum numbers only. Mesons are formed from
quark-antiquark pairs and appear in nonets [33*=
18]. Baryons are formed from quark triplets
$3I33I33=1$8EB8'f310]. In Fig. 8.2(a) we show
duality diagrams for the scattering of meson nonets
%+M—+&+M. As can be seen in Fig. 8.2(a), a nonet
eigenvector of the SU(3) crossing matrix exists, having
QQ pairs intermediate in every channel. In other
words, it is possible, from the internal symmetry
viewpoint, to build a completely self-consistent narrow
resonance world out of meson nonets alone, and in fact
this is what we discussed in Sec. VII.

For meson —baryon sca.ttering, MB—+MB in the
s and u channels, M3f~BB in the t channel, we want a
solution with Ll88'$10] in s and u, [168] in t.
This also exists (Roy and Suzuki, 1969; Mandula
et a/. , 1969), and so far exotics are not required. Duality
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diagrams for the meson-baryon process are shown
in Fig. 8.2(b), (c).

Consider now baryon —baryon scattering, BB—+BB
in the t channel, BB—+BB in the s and n channels. If
resonances appear in the t channel, they will be exotic
ones with baryon number B=2. There is as yet no
definitive experimental evidence for the existence of
exotics and we therefore may want to eliminate such
objects." For the scattering of octets (00—+00 in t,
etc. ) this is possible to do without reaching any con-
tradiction with the MM—+MM and MB—+MB ampli-
tudes. Trouble, however, arises when we try to force
out exotics in the octet—decuplet (OD~OD) and
decuplet —decuplet (DD +DD) c—hannels (Rosner, 1968;
Roy and Suzuki, 1969; Rosner, Rebbi, and Slansky,
1969) . The absence of B= 2 exotics in the decuplet
processes results in exotic mesons in the OD—+OD and
DD—+DD channels.

One can reach this result either by drawing duality
diagrams for BB~BB,as in Fig. 8.2(d), or by directly
using the SU(3) crossing matrices (Rebbi and Slansky,
1969).

Roughly, what is happening here is as follows. The
relevant Clebsch —Gordan series for the processes with
decuplets are (de Swart, 1963)

8 10*=8Q) 10*@2735*,

10 10*=1Q)82754.

Except for very peculiar circumstances —such as
when scattering self-adjoint representations like 8 s-
the crossing matrices will not be diagonal in a particular
single representation. 4' One expects to have more than
one representation appearing as intermediate states in a
given channel. This makes it very dificult to eliminate
exotics if, as in 810* above, there is only one normal
representation available. Either 10~ or 27 must occur
(Rosner, Rebbi, and Slansky, 1969). In 10810* it
turns out that the 1 does not help and that there is no
way to eliminate 27.

There is always the escape from this situation con-
sidered in the mw case above. We can try to force the
exotics to appear at very high mass, by making the
intercept of the leading exotic trajectory large and
negative. This may very well be how nature works.
We have been unable to construct an argument which
eliminates this possibility, in the narrow resonance
framework, though we strongly suspect that one exists
and that exotic objects appear as consequences of
nonlinear unitarity constraints. We can only say that in
the present state of the model (a) there is no way of

44 There is some recent experimental evidence in favor of the
existence of exotics. However, this evidence is inconclusive.
See the review of Tripp* (1969), Sec. VI, and also Kato et al.
(1969).

'" In fact, it is quite possible that, except in trivial cases, it
can be shown that crossing matrices for an arbitrary Lie algebra
never have only the diagonal element nonzero in a particular row
and column pair.

telling at what level exotics appear, and (b) the intro-
duction of exotics solves none of the diSculties of
classical Regge pole phenomenology.

In terms of duality diagrams exotics appear in
baryon —baryon scattering because it is topologically
impossible to construct a baryon —baryon picture having
only QQ in the s and u channels. States containing
QQ QQ must appear. Freund, Waltz, and Rosner (1969)
have suggested a selection rule, constructed along the
lines of a previous suggestion of I.ipkin (1966), which
limits exotic states to QQ QQ resonances coupling to
BB systems. We are skeptical that nature has chosen
such an arbitrary construction.

Mandelstarn (1970a) has suggested that exotic
states can be incorporated into the narrow resonance
model by making the intercepts of trajectories a
quadratic function of the total quark number (quark
plus antiquark number) . This increases the degeneracy
of the level structure when we try to factorize the pole
residues, as discussed in Sec. VII (Olesen, 1970a). The
degeneracy is still exponential, but, in mass terms of
the ana, logy with Hagedorn's statistical model (Hage-
dorn, 1968), the temperature is higher so that

exp (4.1s'") —+ exp (6.2s'~')
one 0+ trajectory exoti c trajectories

(8.7)

For the reasons given in Sec. VII, and to be discussed
further in XI, we also find Mandelstam's procedure
unattractive.

There are additional undesirable predictions of exact
duality that we have already touched on in Sec. VII.
As we saw there, certain unobserved trajectories arise.
For example, from pp or pm scattering one deduces the
m. trajectory must have an I=O, J~~=O degenerate
partner.

Because of its various disabilities outlined above, we
believe that duality must be broken, and that this
breaking will be associated with high-energy elastic
diffraction, the existence of baryons, and the non-
existence of leading exotics. In the next section we will
discuss some ways in which duality breaking could
occur.

C. Breaking Duality

For the reasons discussed above, we believe duality
must be badly broken in nature. We will discuss here an
interesting semiquantitative suggestion of how this
comes about Ldue to Mandula, Weyers, and Zweig
(1969a)).

As pointed out by Schmid and Yellin (1969), in order
for the FESR bootstrap, defined in Sec. II, to work, the
narrow resonance approximation and the parameteriza-
tion of the amplitude with Regge poles must have
overlapping regions of validity. Resonance saturation
requires small s (or cutoff X), while the Regge assump-
tion requires s large. In order for the scheme to work,
we require s to be in the interval s&&s&s2, where s&

is the mimmlm value for which the Reggeization is
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good, and s~ marks the maximlm value of s for which
narrow resonances saturate the FESR.

Mandula et u/. hypothesize that s& should be asso-
ciated with the position of the threshold in question,
while s2 is related to the point at which inelasticity sets
in. Fixing s& in this way follows from the notion that
the nonresonant background in the FESR represents
the contribution of the Pomeranchon (Freund, 1968a;
Harari, 1968) and that the Pomeranchon arises from
the presence of the infinity of inelastic channels. As
far as s& goes, it is by no means selfevident that the
Regge series fails to make sense below threshold, but if
we accept the Mandula et al. guess that it does not, we
have a partial explanation for the difficulties with BB
channels discussed above. In BB—+&M, using these
ideas, s& &43fz', and s2 is probably near 1 BeV', so that
there may be no overlap at all, and duality is maximally
broken. Once one accepts these ideas, it is straight-
forward to write down a hierarchy of reactions in which
duality is more and more badly broken. 4' One can even

try to make some rough comparison with experiment.
See Mandula et at. for the details of such an effort.

We have been rather cavalier above about ignoring
exchange degeneracy, and concentrating on SU(3)
quantum numbers only. For example, in the rneson-
meson and meson —baryon cases the usual J~c=1 (p)
and J~c=0 +(x.) trajectories must be accompanied by
2++( f, As) and 1+ (8) partners in order to achieve
self-consistency. Further details regarding this can be
found in the discussions of Mandula et at. (1969a, b)
and of Rosner, Rebbi, and Slansky (1969) .

Additional work relevant to this section can be found
in Kato et al (1970), N.eville (1969), Schmid (1969b),
Schwimmer (1969), and Yellin ('1969c). For an exten-
sive review of. the subjects of this section see Mandula,
Weyers, and Zweig (1970).

IX. CLOSED LOOPS —REGGEIZED
PERTURBATION SERIES

An attempt has been made to generate a theory
which takes the tree diagrams present in the simple
Veneziano model and uses them as Born terms in a
perturbation series. This approach is motivated by the
factorization properties of the Veneziano model dis-
cussed in Sec. VII and a bit of field theory folklore
commonly known as the "tree theorem. "

Briefly, the

tree theorem states that, in a perturbation theory with
factorized pole residues, unitarity sums which involve a
complete set of two particle intermediate states can be
performed by combining two external legs of a tree dia-
gram to form a loop (see Fig. 9.1) . Only one set of inter-
mediate states need be summed. A common terminology
is that the loop is "sewn together" from the tree
diagram (Bardakci, Halpern, and Shapiro, 1969). If it
converges, a perturbation series based on such fac-
torizable loops will produce a unitary, though not
necessarily correct, 5 matrix. '

In this section, we would like to discuss the construc-
tion of a simple square graph from the E-particle
narrow resonance amplitude and examine some of the
dif6culties which occur when we try to enforce fac-
torization at the daughter level. We would also like to
mention brieRy the construction of diagrams with
twisted loops and examine some of their properties.

Reggeized, dual, closed-loop diagrams suffer from
the same maladies which affect the S-point functions
discussed in Sec. VII. Furthermore, as we shall see
below, in trying to form an amplitude with closed
loops, the loop integrand itself, which is defined by an
infinite product, diverges at one corner of the integra-
tion volume. Mandelstam (1970b) has suggested this
difficulty arises because of the exponential degeneracy
of lower trajectories discussed in Sec. VII. This points
up again what we have emphasized repeatedly above.
Each additional requirement imposed on narrow
resonance amplitudes thus far has led to further
complications.

A. Construction of the Square Grayh

To illustrate the techniques involved in the con-
struction of functions with internal loops, we will form
the integral representation of an amplitude with the
singularity structure of a simple square graph. In
analogy with the approach discussed in Sec. VII, we
associate with each of the internal lines in Fig. 9.2 an
integration variable u, ( j=1, 2, 3, 4) and tentatively

4' Mandula et al. (1969a, b) obtain the hierarchy mentioned
above and diverse other results by reducing the problem to a set
of bilinear constraints on coupling constants similar to those ob-
tainable by using the EjD method (Cutkosky, 1963), a Z=O
field theory (Kaus and Zachariasen, 1968), or a straight narrow
resonance model such as that discussed in the present work.

These constraints suffer from the same limitations discussed
in Sec. IT.A and do not possess a unique solution. Mandula et al.
make a very clever choice of solution in order to obtain gross
agreement with experiment. [I'or alternate solutions, see Capps
(1969).j Since these relations could equally well be obtained bp
using the assumptions outlined in Sec. II.A, the justification of
these results awaits the construction of a model which does not
suA'er the grievous pathologies of the narrow resonance model
discussed in the text.

Fit. 9.1. Factorization relates a diagram
such as (a) to a diagram such as (b), where the
two cut legs represent identical particles with
opposite momenta

(b)

' See the remarks at the end of Sec. IX.C for speculation about
what could go wrong with the perturbation series.
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write the amplitude in the form

s(qr" q4) = —g' Ul U3

dududu 4uu ' ' b k+" u ' k+"+" u„

yu —~—t—b(b—e4) u —&—&—bb G(u. q.) (9 1)

where the form of G(u, , q, ) is to be determined by
factorization. When we go to the pole at

cr(k') =a+bk'=0 (9 2)
U~

(c)
in (9.1), factorization requires that the residue be
expressed in terms of the appropriate form of 86, Eq.
(7.29). Similarly, when we go to the lowest poles on
the other internal legs, we want the amplitude to be
expressed in terms of the tree diagrams for these
configurations. We therefore get the form

S(q, q, ) = —g' J d'k

duldu2du3 du u —a—1—b(k+

yu -a—1—b(k+q1+q2) u —a—1—b(k-q4) u —a—1—bk2 2 2
2 u3 u4

y$(1—ut) (1—us)] I '—ba[(1—us) (1—u4)] ' ' "
X I (1—urus) (1—usu, ) (1—usu4) (1—u4ut) )'+"+'

)& L(1—utu. u, ) (1—utusu4) ]'""
X $(1—ususu4) (1 utu .u—4) 5'". 'H (u, , q, ), (9.3)

where q, =m, (qt+qs)-'=s, (qt+q4)'=t, and rr(s) =
a+bs is the unrenormalized linear input Regge trajec-
tory. At this point we still have an undetermined
function FX(u, , q;) which must satisfy the following
constraint:

U2

FIG. 9.3. Different corners of the integration region, (u1, zt2,
'I$3 zt4), in (9.1) produce different Feynman diagrams. The sin-
gularity structure in (a) is produced at (0, 0, 0, 0), a diagram
like (b) comes from (0, 0, 1, 0), (c) comes from (1, 0, 1, 1),
and (d) from (1, 0, 1, 1) . No diagrams are produced at (1, 1, 1, 1}
and this is the corner at which the infinite product, (9.9), diverges.

1 dxldxs ln xl ln x3
exp —t

, ln'XlX3 ln (xtxs)

yI (1 x ) (1 x ) Is+bt (1 1xx )—-2bt

X
ln (xtxs)

Xl X3

(1—xr)' (1—x )'
a+bt

(xtx, )-'-'

(9.5)

to reach a region where k2 is negative definite. 4' The
asymptotic form of the function is then found to be

8 ——
g4r (—a—bt) (ln s) ( —bs).+"

H(u, , q, ) =1, when any u, =0. (9 4)
—g4I'( a bt) (ln—s)—(—bs) '+" g (t), (9.6)

This is the result of Likkawa, Sakita, and Virasoro which, to second ordering gives the new output Regge
(1969). They point out that the integral over the loop
momentum can be done if a Wick. rotation is performed

cr„„.(t) =a+bt+g' Q (t). (9.7)

Fro. 9.2. Definition of
variables involved in
defining the square-
graph amplitude of Kik-
kawa, Sakita, and Vira-
soro (1969).

k ti U4

k+ql

U~

U &t k+q +q,

q
2

q =m

Uy

k —q4

q+q +q,+q, =O

(q+q ) =s

(q, +q )' =t

It is possible, therefore, that we can maintain crossing
symmetry and Regge behavior in a perturbation theory
of this sort where internal states include an arbitrary
number of internal loops. Polkinghorne (1969) has
discussed the interpretation of this renormalized Regge
trajectory, which has a nonzero imaginary part and
gives poles on the second sheet of the Mandelstam
variables.

The res, der will note that the integrand of (9.3) can
be expanded in a power series in the u, and that the
divergence of this series at the corners of the integration

4 This rotation is performed formally without taking into
account any possible contribution from

~
kb j

= ~.



$68 REvIEws oF MQDERN PHYsIcs ~ APRIL 1971 ~ PART I

Xy

( b)

(c) (d)

E'I|-. 9.4. 'i' onplanar diagrams classified by Kikkaava, Klein,
Sakita, and Virasoro (1969).

volume produces the different Feynman graphs
indicated by Fig. 9.3. (As we shall see below the
corner where all I;=1 contains essential rather than
Feynman singularities. )

Our derivation so far depends only on the form of
the amplitude 86 for J =0+ bosons and does not take
into account the couplings to spinning particles, both
on the parent trajectory and on daughter trajectories,
which can be projected out of the Veneziano model on
the basis of the factorization of Fubini and Veneziano
(1969) and of Bardakci and Mandelstam (1969). If we
go to a pole at n(k') =e in the integrand of (9.3) and
require that the residue be consistent with the couplings
of the factorized states in Eq. (7.23) and (7.24), we
get a further constraint on the form of H(u, , q, ) in

(9.3). This has been done by Bardakci, Halpern, and
Shapiro (1969). LSee also the note added in proof to
Kikkawa, Sakita, and Virasoro (1969).] They show
that complete factorization of this type involves
replacing each simple factor in (9.3) by an infinite
product

(1—ug)-' —'-'—+ ll L1—ug(ugugu3N4) ]
n=O

(9.8a)

g L1—(u&u2u3N4) "]-'"' '. (9 9)

l 1—g2/3) ~+&(8+™)~
g LI—N2M3(myggg3N4)'+]0+&o+™~
n=O

(9.8b)

etc. and including another infinite product which has a
form which depends upon the linear dependences or
Ward identities among the factorized states in (7.24):

When we put the infinite products into the integrand,
we encounter an alarming problem. The infini te
products diverge violently at one corner of the integra-
tion volume (u&=u2=u3=I&=1). If we arbitrarily
remove this piece of the region of integration, the
infinite products do not affect the asymptotic behavior,
(9.4), of the function as Re s—+—~, but we get some
exponentially increasing asymptotic form in the
Re s) 0 region which depends on the volume removed.
This divergence or exponential increase appears
t.o be due to the large number of daughter states
present in the factorized form (7.45) and Mandelstam
(1970b) has conjectured that it is necessary to do
some sort of renormalization to minimize the import-
ance of these lower trajectories before enforcing fac-
t.orization, in order to get a finite result. 4'

This simple discussion of a square graph illustrates
t,he techniques which can be used to write amplitudes
with a single planar loop. The extension to a larger
number of external particles, nonequal intercepts, and
internal symmetries can be readily constructed. (Again,
not without complications however. )

rhe derivation of the form of the square graph has
been recently redone by Amati, Bellac, and Olive (1969)
in terms of the operator formalism of Fubini, Gordan,
and Veneziano (1969). Since the levels of the harmonic
oscillator operators in this formalism provide con-
venient labels for the factorized internal states in the
model, this calculation verifies that the loop is really
constructed from a unitary sum. For example, using
this method it can be explicitly seen that the linear
dependences serve to remove unwanted internal states
from the unitarity sum. The calculation reproduces the
result of Kikkawa, Virasoro, and Sakita (1969) and of
Bardakci, Halpern, and Shapiro (1969).

B. Twisted Loops, Nonplanar Diagrams, and
Regge Cuts

Once we start considering internal loops, we are led
to Feynman diagrams which are nonplanar. Experience
with sums of Feynman diagrams Lsee C. Risk* (1968)
for a review of the asymptotic behavior of sums of
Feynman diagra, ms] suggests that functions with a
nonplanar singularity structure will have a more
complicated asymptotic behavior. They may, for
example, have cuts rather than poles in the J-plane.

In the Veneziano model, one way of looking at this
problem involves the twisting operator (Amati, Bellac,
and Olive, 1969; Caneschi, Schwimmer, and Veneziano,
1969) mentioned in Sec. VII. Recall that B~(p~, ~ ~, p~)

"Whether the absorptive part of the box diagram increases
exponentially as s~+ ~ is not known. Since all known renor-
malization procedures do not affect absorptive parts, such an
event would have calamitous implications for the future of this
theory. As yet no one has discovered a way of properly deforming
the contour of the loop integral in (9.3) so as to perform the
calculation directly. An indirect computation may be possible
by examining the total width of a state on the parent trajectory
I,s a function of its mass.
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depends on the ordering of the external particles.
Different orderings are related by twists of the internal
lines of the tree diagram. From the schematic indication
of how a loop is "sewn together" from the tree diagram
given by Fjg. 9.1 we can see that, in general, the presence
of a twist can change the result. Loops containing
twisted lines are commonly referred to as twisted loops.

Kikkawa, Klein, Sakita, and Virasoro (1969) have
classified the various nonplanar diagrams related by
duality (see Fig. 9.4) to be either orientable or non-
orientable according to whether the diagram contains
an even or an odd number of twisted lines. The terms
"orientable" and "nonorientable" refer to the topo-
logical structure of the dual diagrams. They have shown
that the reasoning which led to (9.3) can be repeated
to formulate a recipe for constructing functions with
cut singularities.

Kikkawa (1969) has taken a simple example of a
function with a nonplanar loop without the complica-
tion of the infinite products and has shown that it
possesses an asymptotic behavior which corresponds
to a Regge cut. This result makes plausible a connection
between this model and sums of Feynman diagrams.
It also indicates that if a convergent perturbation
series based on the Veneziano model could be formu-
lated, it would probably contain Regge cuts, which
seem to be desirable from a phenomenological view-
point (see the review of Jackson, * 1970).

Thorn and Kaku (1970) have used the harmonic
oscillator formalism of Fubini, Gordan, and Veneziano
(1969) and the twisting operator of Caneschi,
Schwimmer, and Venezia, no (1969) to perform the
unitary sums present in a diagram with one nonplanar
loop. Their result agrees with Kikkawa, Klein, Sakita,
and Virasoro (1969).

C. Ghosts, Factorization, and Divergences

The divergences present in the square graph of this
model due to the infinite products make the inter-
pretation of the results very difficult. Olesen (1970b)
has shown that, by adding more trajectories of non-
leading intercept, it is possible to remove the diver-
gences in the square graph. The divergence which
appears in the simple model with a universal trajectory
is due to two things: (a) the large number of states and
(b) the bad behavior of the vertex operator. Introducing
the new trajectories d la Olesen increases the number
of states, but also results in a much better behaved
vertex function.

The infinite products present in nonplanar loop
diagrams diverge at various places within the integra-
tion volume. It is not possible to remove one specific
chunk of the integration volume which removes
divergences from all types of diagrams.

To interpret the results of this model we need a
renorrnalization scheme apparently several orders of
magnitude more complicated than renormalization in

quantum electrodynamics. Much effort is being ex-
pended to solve this problem, and various calculations
are being made on the assumption that a renormaliza-
tion scheme will be found. In particular, an effort is
being made to construct functions containing more
than one internal loop. The possibilities for progressive
complication seem endless. What is lacking is a sub-
stantive clue that this approach has a reasonable
chance of realistically describing hadron physics.

Because of the presence of ghosts, associated with the
indefinite metric rising from the orbital factor structure
of Sec. VII.C, it is even quite plausible that the theory
can never be made unitary and analytic at the same
time.

The prototype theory of this kind is that discussed
by Lee and Wick (1968) and Lee (1969). The point is
that, in each order of "perturbation" theory, the ghosts
in such a model are likely to lead to negative cross
sections. Whether or not this is actually the case here
needs to be checked. We suspect that it is, and that the
problem needs to be avoided via the methods of Lee.
If this problem is present, then the probability that
the whole method is at all relevant seems infinitesimal. "

See also the work of Green (1970), Susstund (1969b),
and Thorn (1969).

X. PHENOMENOLOGY AND RELATED MATTERS

In this section we will discuss various aspects of the
question: Is there any experimental evidence which
lends support to the idea that the narrow resonance
model is an approximate description of reality? In
particular, are there any pieces of the model which
could reasonably be used instead of, or in addition to,
the already available multiperipheral model (Chew,
Goldberger, and Low, 1968), the strip model (Collins
and Johnson, 1969), or the absorptive Regge model
(Arnold, 1968)? See Jackson* (1970) for a review of all
these models and their applications.

With certain qualifications, our answer to these
questions is eo. In this section, we will explain this
conclusion by discussing specific examples.

A. Existence of Subsidiary Trajectories

Suppose we do not worry about factorization and
instead concentrate on a specific, isolated interaction.
As discussed in Sec. III, the narrow resonance model
predicts an infinite set of resonance towers; each tower
being a set of mass degenerate states with spins running
from zero up to a maximum value, n(M'), where M'
is the tower (mass)' and n(x) is the leading Regge
trajectory. The model for the four-point function
predicts the elastic width of each state in the tower,
although, in view of the fact that unitarity is violated

We are indebted to R. I". Dashen for pointing out to us the
possible connection between the narrow resonance bootstrap and
the model of Lee and Wick (1969). That diseases of this kind can
occur in every order has also been noticed by D. Amati.
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r,/r, =9/2. (10.1)

Since this resonance would be quite broad, its
presence must be inferred from the gross behavior of
the I=O s-wave ~~ phase shift, 800(s), from threshold
up to 1 GeV. The e resonance has been invoked in the
past for various reasons and its status is still contro-
versial. "Without going into details, we conclude that

"See the many and conflicting experimental and theoretical
excursions in "Proceedings of the ANL Conference on xm- and ~E
Interactions, "May 1969.

in the model, we are uncertain how seriously we may
interpret these elastic width predictions.

Consider again the ~x narrow resonance amplitude
discussed in Sec. III. The model contains a 0+ resonance
(the e) degenerate with the p, with a partial width
given by

the existence of a resonance with the predicted proper-
ties does not contradict available experimental evidence,
nor is such an object strongly required to fit existing
data.

At the mass of the f', the model predicts that a
J~=1 particle (the p') exists with

(10.2)

and that if a 0+ state (the e') exists, it does not couple
to the mm system. The prediction (10.2) seems in dis-
agreement with experiment. In Fig. 10.1 we show the
data of Crennel et al. (1968) for the process'. p—&~+n. n
and for m p~o~ p. There it will be noted that the po,

fo, and go appear in the ~+~ invariant mass plot, but
that there is no signal at all in the m m' invariant mass
distribution at the f mass, though the p and g show
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up nicely. This does not directly test (10.2) because the
data measure do (rr N~p'E) r (p'~m) /I'(p' total)
and the production mechanism may, for some reason,
be small. Jackson and Quigg (1968) have suggested a
way of estimating the production. They point out that
the absorptive one pion exchange (OPEA) model has
proved reliable for computing p production by pions.
Treating the p' as a heavy p, the OPEA calculation
should give a reasonable estimate of the relative produc-
tion cross sections for p' and p. The ratio of p' to p
events in the data is not more than 1/10. Combining
this with the OPEA estimate and assuming the p' is
mostly elastic, we have the fairly reliable upper limit

(10.3)

nearly an order of magnitude away from the prediction
(10.2). Corroberation of the limit (10.3) can be found
in the reaction yX—+s.s-X (McClellan et a/. , 1969)."

Since the existence of the p' has been predicted by
the quark model (Harari, * 1968) and has been invoked
to fit electromagnetic form factors (Balachandran,
Freund, and Schumacher, 1964; Wilson, * 1966; Cordes
and O'Donnell, 1969) and charge exchange polarization
(Barger and Phillips, 1968), the absence of this reso-
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""- A discussion of the experimental situation vis-a-vis heavy
vector mesons can be found in Diebold* (1969), Sec. II.4.

I' IG. 10.2. A compilation of all available data on backward
hemisphere pp elastic scattering data as a function of the center-
of-mass energy of the NN system, taken from Barger and Cline
(1969b).The data in the S region are from Cline, English, Reader,
Terrell, and Twitty (1968). The data in the T region are from
Berryhill (private communication), Cooper et al. (1968), Ma,
Parker, Smith, Sprafka, Abolins, and Rittenberg (1968), and
Lys, et al. (1968l (denoted as Chapman et at on the figurej. .
An eyeball curve is drawn through the data. A recent counter
experiment covering the mass region of 2000—2400 has observed
a sharp dip near 2100 (Barish, 1969; Tollestrup and Lobkowicz,
private communication). This dip is schematically included in the
curve drawn through the XN data to indicate the possible
separation of the S and T "tower" regions (compare Fig. 2.3).
According to Barger and Cline, the narrowness of the fine struc-
ture observed in the S "tower" may represent narrow resonance
states, but might also come from broader resonant states which
are cut off on the low side by centrifugal barrier effects in the
NN system.

nance embarrasses others besides the proponents of the
Veneziano model. But this is beside the point. A
narrow resonance model is certainly no better than the
resonance spectrum it predicts and the use of this model
for phenomenology will continue to be suspect unless a
p' resonance is found. "One escape would be to assume
that the p' is very inelastic. If the p' had a total width
of order 1 GeV or if there were an accumulation of
secondary effects, there would be no conflict between
the production data and (10.2) .

The existence of approximately degenerate meson
towers is strongly dependent on the validity of semilocal
duality, and in general results in the absence of back-
ward peaks in elastic scattering processes having an
exotic u channel. (A somewhat more optimistic view
than taken here of the experimental situation can be
found in Barger and Cline (1969b), who discuss
m+~, rr+E, K+K, and lV!V elastic scattering. )

For the meson —meson processes considered by
Barger and Cline, there is some doubt, which we share,
that the data actually exist." The use of,'VE elastic
scattering, on the other hand, does not suffer from this
ambiguity, and Barger and Cline propose several
methods for detecting meson towers in this reaction.
Their compilation of the pp and gr&t data for do/dQ up
to a center-of-mass energy of 2.5 GeV is shown in Fig.
10.2. The evidence for the tower structure is incon-
clusive, but the approach is interesting and deserves
further investigation.

As we discovered in previous sections, an attempt to
construct narrow resonance amplitudes for processes
with more complicated crossing structure than that of
mx~xw leads to trajectories with negative widths.
Also, in processes with nontrivial helicity crossing
matrices there is no compelling reason to restrict
attention to simple one-term formulas, so there is no
unique daughter structure to discuss. '4 One thing we
can say is that a large number of daughter states must
exist if we are to maintain the concepts of resonance
dominance of absorptive parts and Regge behavior
which first led us to investigate narrow resonance
models. A possible rationalization for the failure to
find such daughters is the interpretation that lower
daughters in narrow resonance models actually repre-
sent background in the physical amplitudes (Bardakci,
1969). This belief is behind the following statement
frequently found in the literature: "The model can only
be believed for parents and first daughters" (Lovelace,
1969a) . This interpretation of the predictions of narrow
resonance models is in striking contradiction with the
philosophy of Fubini and Veneziano (1969), Bardakci
and Halpern (1969), and Bardakci and Mandelstam
(1969) discussed in Secs. VII and VIII.

A contrary opinion may be found in Harari* (1969).
"'4 Evidently, a simple narrow resonance parameterization of a

process with nontrivial external spins is precluded, if one simul-
taneously tries to eliminate exotic resonances. One of us (J.Y.)
would like to thank Professor Lorella Jones for a helpful private
communication regarding this problem.
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FIG. 10.3. Invariant mass distribution for ~++ from pn-
7r+~ ~ . Data taken from Anninos et al. (1968). Theoretica. l

curves are those of I.ovelace (19Nb) and Berger (19Na).

B. The Process gA=—371-

The process pe—+7t. ~ 7t.+ for stopping antiprotons has
been compared with the Veneziano model by Lovelace
(1968), Berger (1969b), and Altarelli and Rubinstein
(1969).

Lovelace suggested the use of a two-terni formula

1[1—-( )]1[1—(")]
I'[1—n (si) —n (s2) ]

be free parameters and found a best fit which is com-
pared in Figs. 10.3-10.6 to a fit using Lovelace's
parameters. Not surprisingly, Berger's Gt is somewhat
of an improvement. Altarelli and Rubinstein take
three more terms than in (10.4) and, having nine
parameters, do slightly better.

The claim that such fits provide evidence for the
Veneziano model is debatable. As Berger points out, it
is not clear how the details of the model have entered
beyond the fact that the Irir system contains a p, an f,
and a large s-wave phase shift. However, the data of
Anninos et at. (1968) do show a diminution of events
on the Dalitz plot near si ——s2—1.1(Gev)' and indica-
tions of possible zeros at s~=0, s2—2.1 and s1—2.1,
si—0, so this point remains an open question.

Altarelli and Rubenstein (1969) and Jengo and
Remiddi (1969a) have also considered the annihilation
IIP~3Ir where the Dalitz plot is not so well known.
Using Bizzarri's (1968) estimate of the conversion
factor pP —+all/pII —+all, Altarelli and Rubenstein reach
rough agreement between the experimental and
theoretical values of

Pri VSIIP ~ Ir+Ir Ir'.
(1=1)

Jengo and Remiddi also discuss the total rates using
I.ovelace's original form, P = 0 in (10.4). They compute

R = I'(pii —+Ir+Ir-Ir —
) (I'[pp ('s, )~Ir+Ir Ir'] =0.17,

I'[1—n(si) ]I'[1—n(s2) ]+v I [2—n(si) —n(») ]
with a phenomenological Regge trajectory

n(x) =0.483+0.885x+ic(x—4m ') "'0(x—4ns ')

and with (p=pi+p. +p3),

( 10.4)

(10.5)

(10.7)

which conflicts with the theoretical calculation of
Altarelli and Rubinstein and also with their phe-
nomenological estimate:

E= 1.6(+1.1, —0.8).

si (p+ pl) ) and s2 (pi+ p2) ) ( 10.6)

where Pi and P2 are the 4-momenta of the two Ir

mesons. Since the trajectory (10.5) has an imaginary
part, the poles in (10.4) are no longer on the real avis.
Also, their residues are no longer polynomials in the
crossed-channel invariant, but the ancestor problems
associated with this property are numerically not too
serious for this particular application.

The plausibility of the form (10.4) arises from the
experimental fact that pe annihilation at rest proceeds
mainly through the singlet state so the initial system
acts like a heavy pion. Then (10.4) can be considered
as arising from some sort of mass extrapolation of one
leg of the 7t.7t.—+71.7t- system.

Lovelace set P=O and attempted to find a one-
parameter [c in (10.5)] fit to the Dalitz plot and to
the 7r+7r and 7t- ~ maSS diStributiOnS. Berger, and
Altarelli and Rubinstein pointed out independentl&
that this fit did not match the angular distribution in
the p and f regions. Berger took P and y in (10.4) to

+
7r 7T 7T

200—
Lovel ace ( P = 0)
P= —1.0; 7= 1.95

100—

I

0.5
I

1.0
I

1.5 2.0 2.5 3.0
2 2

(Mass (7r 7r )) (Gev)

L IG. 10.4. Same as 1'ig. 10.3 for invariant mass distribution
of 7r 7r
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Vote added z&z proof: Recent further experimental
work on pe annihilation in flight reveals what are
evidently more zeros scattered across the (expanded)
Dalitz plot. Odorico (1971b) has made the interesting
observation that the totality of zeros evidently does
not correspond to the usual FI'/F form but rather a
better fit is obtained by using FI'/I' times

sin[-', zr(x —y) ]/sin[-', zr(x+y) ].
Since this new function is odd rather than even under
crossing, we are facing a situation that makes no sense
in the language above.

C. E-Matrix Unitarization Procedure

I 20—

O

o IQQ

E
O

80

p-Region: 0.64 & M &0.90

—~—Loveloce ( P = 0)
P= -I 0; V= I.95

From the arguments in Sec. X.A, the mm narrow
resonance model cannot be believed in the region of the

f mass, but. suppose it can be believed below the f.
That is, suppose we believe in the p and e resonances
predicted by the model. Can the model be "improved",
beyond the obvious use of Breit-Wigner line shapes,
by a simple E-matrix unitarization in order to give a
believable set of phase shifts?

Lovelace (1969a) has suggested that this procedure
will give consistent phase shifts. (See further discussion
above in Sec. UI.B.) The K-matrix approach has
been applied by Wagnet (1969b) to the process zrcV~
zrzrlV and by Roberts and Wagner (1969b) to IV~4 decay.
Lovelace himself (1969a) has applied the method to a
coupled ~x-EK system and compared the results with
other semiexperimental analyses.

I

g20 F-Region '. I. I 4 & M+ & I.57

280

240

a 200
E
O
O

I 60

I 20

80

60
E

40

20

0
—1.0

Cos 6I

+ I.O

I'IG. 10.6. Same as Fig. 10.5 for p mass region.

Recall that the E-matrix formalism essentially
enforces elastic unitarity so that the low-lying reso-
nances predicted by the model are given a total width
approximately equal to their elastic widths. The
procedure destroys the crossing symmetry of the
amplitude, so the phase shifts cannot be completely
consistent. "To see this, we assume that the mm I=1,
t-channel amplitude satisfies an unsubtracted dis-
persion relation, so that we have the on-shell form of
Adler's zrzr sum rule (Adler, 1965a):

m ~ dv
—,
' (2ao —5az) =L =

6zr z .z (v' —4m ')

&&[2AO(v, 0) —5A, (v, 0)+3Ay(v, 0)$. (10.8)

This relation may be more recognizable to readers
in the form

m dv
L = —, , [o+-

(v) ++
o( ))—, v(10.9)

8m' z„.z (v' —4zzz ')'"
where o'~ is the total cross section for zr +zr~. Now, in
the Ueneziano zrzr formula, Eq. (3.13), with zero mass
pions and n, (0) =-,', o.,'(0) =1, the sum rule can be
written as

40
L =zrL(p), (10.10)

0
—I.O + I.O

where L(p) is the p contribution to the right-hand side
of (10.8) . If we take n, (0) =0.48 and use the physical
pion mass, we get

Cos 6'
L= 1.05zrL (p) . (10.11)

FiG. 10.5. Distribution in the Dalitz angle, defined by the
inset, for events in the f'mass region in pn —+m.+7i- x .Experimental
and theoretical curves as in I'ig. 10.3.

'" The same objection evidently applies to the Pade approxi-
mate method of Basdevant and Lee (1969).
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TABLE 10.1. 7r~ Scattering lengths (theoretical) .

Source I.= (1/6) (2ap —5~) Remarks

Adler' 0.10~0.01/ns ~ SU(2) g SU(2) and Goldberger —Treiman
relation

Weinbergb Same —7/2 Broken SU(2) SU(2) via (-'„-',) rep-
resentation

Tryon' 0.11+0.01/~n ' —7/2 Unitary, crossing symmetric numerical pro-
cedure

Morgan and Shaw~

0th Order Veneziano'

0.10~0.01j~n.~

0.11~0.02/I

—3.2~1.0~ Numerical unitarization of fixed $ dispersion
relations, input F,= 120 MeV, bp'(nzp) =
—20' 'Jap 764 MeV Bp ln p region

Error from uncertainty in rho width; ap/a2

undetermined

Lovelace I'

Lovelace II (Tryon) '

Lovelace III (Morgan and Shaw)d

0. 15/~n

0. 12/nz„
0. 13/ez

0. 11/nz

—4. 5

—14.5

Threshold Phase Shift from "E-Matrix"
procedure, coupled 7r7r—EE channels

Numerical integration of Lovelace phase
ShiftS uSing 7r7r Sum rule; upper Value

coupled channel, lower uncoupled

Numerical unitarization of fixed t-dispersion
relations using Lovelace bp in p region and
bp'(nzp)

a Adler (1965a).
"Weinberg (1966).
o Tryon (1969a) .
'I Morgan and Shaw (1970).
e Tryon (1969a).
f Lovelace (1969a).

Gutay et al. (1969); Cline et at. (1969),

' Error estimate from assuming the error in the 7r7r extrapolation + the
error in the sr~'v (g~) sum rule.

' Error arising from inherent uncertainties in numerical procedure; see
text of Footnote c above.

' Error arising from uncertainties in input from semiphenomenological
analyses of Footnote g above.

Finally, normalizing by taking the p width to be
112 MeV, we get L=0.108m '. This is the naive value
one gets from the narrow resonance model. It essentially
agrees with the current algebra value of Adler (1965a) .
On the other hand, Lovelace's E-matrix form gives
I.=0.15m ' (Lovelace, 1969a) . This discrepancy
between Lovelace's result and the current algebra
result casts suspicion on Lovelace's low-energy phase
shifts since the corrections to the current algebra value
arising from mass extrapolations are expected to be
equal to or less than the error in the gz sum rule for
vr'V scattering, which is about a. 10% correction. "

The sum rule (10.8) provides a rather delicate test of
crossing symmetry. The crossing properties of the erst
few partial waves can be improved to a certain extent
by an iteration procedure in such a way to obtain a
modified set of p and e parameters. This has been done
in several ways for the region below 1 GeV in ~~
scattering by Tryon (1969a) and by Morgan and Shaw
(1970). Tryon's model is exactly crossing symmetric, is
approximately unitary in the energy region below
1 Gev, and converges to the narrow resonance amplitude
(3.13) in the asymptotic region. The E matrix phase
shifts of Lovelace can be inserted into (10.8) and I
can be obtained. Tryon (1969b) has done this cal-

culation and obtained values of L=0.12ns„' or L=-
0.13m ', depending on whether or not a coupled EK
channel is included. Morgan and Shaw have also used
Lovelace's phase shifts in their crossing symmetric
procedure and have obtained L=0.11' '. Independ-
ently of the coupled channel problem, these calculations
indicate that crossing symmetry is important, even at
low energies, and dramatize the danger of using
phenomenological forms which violate it. The situation
is summarized in Table 10.1."'

There have been attempts to use the E-matrix
procedure to go even further and fit off-shell behavior.
For niV~vrmlV this has been done by Wagner (1969b),
and Roberts and Wagner (1969a). Wagner's fit to
mN —+xwN uses one-pion exchange and depends on a
modification of the E-matrix procedure, the off-shell
partial-wave amplitude being given by

f/ off —gg$ off (s, q) /L1 +p& gaP(on) j, ( 10.12)

where by a$ ffr(s, q') we mean the amplitude for

"Though the discrepancies listed in Table 10.1 are not large,
they reveal that the K-matrix method does not add to our under-
standing of the low-energy 7rvr interaction. Quite to the contrary,
in comparison with the zeroth order Veneziano term and its reso-
nance parameters, it seems to detract.
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TABLE 10.2. The partial wave analysis oi the resonance tower at the position of the F»Z(2030) for two narrow resonance solutions
for EE and ICE scattering of Berger and Fox (1969).The kinematic factors have been evaluated at the pole positions predicted by
the theoretical trajectories. We list FgN(MeV). The experimental width of the Z(2030) is presently given as 80—170 Me&, with a
KiV branching fraction of 10%—27%.Solution (A) was constructed by using the arguments of Inami (1969) and solution (B) is a some-

what more complicated construction of Berger and Fox (1969).Details of the fitting procedure can be found in Sec.III of Berger and Fox.
Both high-energy and resonance region data have been used in forming (A) and (B) . As discussed in the text, the 3/2+ state here is

related by SU(3) to the F»A(1890).

Solution (A) Solution (B)

JP JP JP JP

1/2+
3/2
5/2+

7/2

15 ~ 7
2. 7

—0.3
0.2

1/2
3/2+
5/2
7/2+

8.9
8.3
9.0
8.9

1/2+
3/2
5/2+
7/2

21.0
—18.3

5.7

2. 2

1/2
3/2+
5/2
7/2+

52. 5
—5.9

5.0
29.9

~s.—&~s.(q'), one of the external legs having q'Wm '. Generally we will follow the arguments of Berger
Wagner assumes that the constant, g, in (3.13) is and Fox.
replaced by" We will examine the following questions:

and uses, to compute partial wave amplitudes,

(10.13)

D. Meson Baryon Scattering

In this section we discuss the phenomenology of mE
and ElV scattering from the narrow resonance point of
view. As we have pointed out at length above, narrow
resonance models are extreme forms of pure Regge
pole models, in the sense that in physical regions high-
energy behavior is governed by moving powers, with
residues of definite form. We can therefore expect that
any difficulties already present in classical Regge
phenomenology will continue if we try to use narrow
resonance forms to fit data. As we shall see below, this
is precisely what happens.

The relevant work is by Amann (1969), Berger and
Fox (1969), Igi (1969), Igi and Storrow (1969), Inami
(1969), I ovelace (1969b), P retzl and Igi (1969),
Virasoro (1969c), and Fenster and Wali (1970) .

This form factor effectively Reggeizes the pion. Compare
the form factors of the absorption model. (Ferrari and Selleri,
1962; Jackson and Pilkuhn, 1964). We will discuss the q'=t dis-
tribution further in X.E. It should be noted that there is no
evidence in nature for Reggeizecl pions (Berger, 1969a).

1=—-'(s —3m '—q' —4
I q.« II q-

~

co») (1o 14)

Equations (10.12) and (10.13) amount to a rather
arbitrary prescription and in fact, in order to fit the
data, Wagner is forced to introduce a subtraction con-
stant into p&~, for i=I=0. Because of the arbitrary
nature of the assumptions involved, we do not believe
that Wagner's fits embody a test of the underlying
model or even of the E-matrix procedure. The K-matrix
procedure has also been applied to K&4 decay by Roberts
and Wagner (1969b). We have similar objections to
this calculation, and will not discuss X&4 decay further
here.

(s,) How are the narrow poles to be smoothed over?
(b) To what extent is the atonous duality property

and the satellite structure rejected in the data?
(c) Can parity doublets be eliminated, so that the

narrow resonance spectrum is reasonably related
to reality?

(d) Regge residues in this model, as we have dis-
cussed above, take the form

with the usual thresh'old factor and Mandelstam zeros
multiplied by a polynomial in a. How does this agree
with the data?

With respect to (a), a completely satisfactory way of
smoothing over the narrow poles does not yet exist.
In the literature, this question is usually avoided by
choosing a complex trajectory, since none of the
"unitarizations" mentioned in Sec. VI has been useful
in making detailed fits."

As for question (b), the satellite structure has
proved a great roadblock to taking all details of the
model seriously, since, as emphasized above, there is
not even one known resonance which can unambig-
uously be identified as lying on a satellite trajectory. '"'

In Table 10.2, we show a computation by Berger and
Fox of the widths of the tower of states degenerate with
the Z(2030, 7/2+), arising from two different narrow
resonance solutions for EE and EE scattering, which
we will discuss below. Berger and Fox tried to identify
some of the states in this tower with the SU(3) partners
of known resonances Pe.g. , the 5/2+ with A(1890,
5/2+), etc.], which have been classified in the quark
model (Harari, * 1968; Morpurgo, * 1968) . For solution

"Alternatively, one can ignore the fact that there are real
poles in the physical regions and use the narrow resonance pole
residues as parameters to be fit with empirical elastic widths.
This was done by Berger and Fox.
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FiG. 10.9. Same as Fig. 10.7 for Z resonances.

FIG. 10.7. Fanciful Chew —Frautschi plot of known Ã, 6
resonances. Data from Rosenfeld et al.* (1969).

A, in Table 10.2, the width of the 5/2+ state is clearly
unreasonable, either if one uses 5U3 to relate it to the
observed F3;(1890), or puts it in the quark model
(56, 2). In the other solution, this width has become
positive at the expense of making the s wave huge and
creating p and d wave ghosts. As discussed in X.A
above, probably one needs to rationalize away satellites
if one insists on using the model phenomenologically,
either by saying they really represent background or by
insisting they arise from local duality and that duality is
badly violated in this energy region.

The question of parity doublets, (c), is again a,

difficult one. In Figs. 10.7-10.10 we show a fanciful
version of Chew —Frautschi plots for most of the
proposed baryon resonances. Parity doubling is not
much in evidence, while generally, as has been known
for a long time, (Gribov, 1963) resonance models for
processes with external spins generally have all trajec-
tories parity doubled, as discussed above in Sec. V.

As pointed out by Berger and Fox, one can always

a'(zt) =0 09+0 9n., . (10.16)

y'(u) = I-n'(u) ——,']135.2+56.0u

add subsidiary terms to cancel parity doublets along
the leading trajectory: however, if one attempts this
for the lower trajectories, the Regge behavior of the
amplitude will be lost.

As for question (d), there is an important difference
between the residue functions used for fits, for example,
by Barger and Phillips (1969) and Barger (1969a), and
those found in the Veneziano model. In the former,
exponential dependence is either introduced explicitly
or implicitly by adjusting the "scale factor, " so, while
in the narrow resonance model the "scale factor" is
constrained to be b ', where b is the universal trajectory
slope and residues are determined up to a polynomial,
as in (10.15).

Since the Regge residues in the model are no longer
arbitrary, we can relate asymptotic behavior along the
fixed I direction to the baryon trajectories as shown in
Fig. 10.11. Berger. and Fox found that the Veneziano
parameterization does not provide an accurate extrap-
ola tion for the 6 tra jectory. They find the best fit

+L(u) ' ' M&]1-29 4+35 8u] I (10 17)

9/2—

7/2—

for the 6 extrapolation. This is shown in Fig. 10.12,
where it can be seen that the coe%cients of I and I'~2

above, indicative of large subsidiary terms, cause p&

5/2—

$/2—

A(li I

I /2

5/2—
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I/2—
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I"zG. 10.8. Same as Fig. 10.7 for A resonances. FIG. 10.10. Same as Fig. 10.7 for ™resonances.
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to grow too rapidly at large
~

e ~.
59 Further, though they

found that residues of states on the S, Zp —Zy, and
A —Ay trajectories were related well by the model to
backward data, this was at the expense of including
rather large contributions from nonleading terms.
For ElV and EE scattering, though Berger and Fox
allow themselves a great variety of terms, of course
accompanied by a large number of free parameters,
they are unable to overcome discrepancies in over-all
amplitude magnitude versus the K+e CEX data,
and in the t distribution for E+p backward scattering.
They conclude these troubles are due to effects lying
outside the basic model.

Finally, there are the classical difficulties alluded to
above, associated with high-energy. elastic di6raction,
dips, and the so-called "crossover zero." Ke will
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""I'The various workers in this field do not seem to agree on
just how bad fits to the reduced residue function and to back-
ward elastic scattering data are. For example, while Berger and
Fox achieved a fair fit to ~ p backward scattering using an elastic
A(1238) width a factor of two too small, Fenster and Wali (1970)
used the correct 6(1238) width as input and found a do-/d~~ for
vr p at pl, b

——9.9 BeV/c, a factor of 2000 too large. Generally,
Regge fits to m p backward scattering have been rather poor, due
to the violent change in the effective experimental reduced resi-
due from m=0 to the h(1238) position. Examples of such fits
may be found in Barger (1969b).

I.'IG. 10.11. E+p backward scattering data as taken from
Carroll et al. (1968},Abrams et al. (1968), Cline et al. ('1967),
Banaigs et al. (1969), and Baker et al. (1968) . The dashed curve
is solution (A) and the solid curve is solution (B), both from
Berger and I'ox (1969). The dot —dashed curve is computed using
the expressions for the A and 8 amplitudes of solution (B),keep-
ing the leading asymptotic term only. As is apparent, in this
approximation with only the leading Regge trajectory, one under-
estimates the empirical do./du badly at the lov er energies.

FIG. 10.12. Reduced residue function for Ab trajectory in xX
scattering. The phenomenological reduced residues were com-
puted in terms of total widths and masses of resonances setting
the scale parameter s0 equal to the inverse of the trajectory slope.
The size of the brackets comes from varying s0 between 0.9 and
1.0 (GeV)' and moving the resonance positions between the
values M„,&I",.„„~4. The resonance parameters are taken from
Rosenfeld et al* (1969). The x at u'"=0 indicates the value of
the reduced residue obtained by Barger and Cline (1968) from
7r p backward elastic scattering fits. The dashed curve is taken
from Igi (1968) . The dot —dashed and solid curves result from two
possible Veneziano parameterizations of Berger and I'ox (1969).

comment briefly on this situation and refer the reader
to Berger and Fox for further details.

The experimental data suggest that the meson baryon
nonspin Qip amplitudes A' have a residue zero at
3= —0.2 (GeV)' associated with the p, ~, and A2
quantum numbers (Dolen, Horn, and Schmid, 1968;
Rarita et a/, 1968; Michael and Dass, 1968; Dass,
Michael, and Phillips, 1969) . The evidence for the
"crossover" phenomenon comes from pp, 7rp, and Ep
elastic scattering.

Furthermore, the data for ~ p—+~'e suggests that
the 8' ' amplitude has a zero at n, (to) =0 Pp——.0.6.
(Gev)']. Now if the system is exchange degenerate
(np nf Q' Q——'Q A), all th—e A' and 8 amplitudes
should have a residue zero at a=0. This is easy to
guarantee in the narrow resonance model because there
is a, convenient factor P '(u) present. Unfortunately
the zero in A' ' at t= —0.6 (GeV)' is not observed.

Similarly, the observed zero in A' at t= —0.2 (GeV)'
associated with the ~ implies by exchange degeneracy
an accompanying one in Pr. This is attractive for several
reasons: it allows one to explain the lack of shrinkage in
scattering as due to a sign change in the f-Pomeranchon
interference term at 3= —0.2 (GeV)' and it is con-
sistent with the duality arguments of Dolen, Horn, and
Schmid (1968), who associate the crossover zero with
the zeros of the I.egendre polynomials of the prominent
s-channel resonances in mp and Ep scattering. The
unfortunate dif6culty with this solution is that, by
factorization, it leads to an unobserved zero in the
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A

parallel straight lines, much as do the zeros of the
narrow resonance model.

E. Phenomenological Applications of Narrow
Resonance T-Point Functions

(b)

A

Since the extension of Ueneziano s original four-point
construction to the S-point case discussed above in
Sec. UII.C, a large volume of work has been devoted to
analyzing experimental production data in this frame-
work. In order to assess the significance of these efforts,
it is necessary to balance whatever successes in fitting
they entail against the uncertainties, assumptions, and
arbitrary choices to which one is forced in order to
construct a phenomenological multiparticle amplitude
of the narrow resonance type.

Typically an attempt is made to fit the following
features of data:

FIG. 10.13. Two possible theoretical forms of the A' ampli-
tude (solid line) in meson baryon scattering. Situation (a), in
which one predicts both the "crossover" zero at t = —0.2 (BeV) '
and another zero at t= —0.6 (BeV)', is forced by duality. Situa-
tion (b) arises because of factorization. The dashed curves repre-
sent the result of including cut contributions or secondary trajec-
tories in order to obtain agreement with experiment.

8 amplitude at 3= —0.2 (Gev) '. The absence of these
zeros is commonly attributed to the presence of cuts,
which destroy factorization. The situation is illustrated
in Fig. 10,j.3.

As we have emphasized above, the Pomeranchon
can be included here only at the expense of also having
exotic resonances (Wong, 1969a). Berger and Fox try
to do this, but their results do not convince the authors
that this is the way things work. One is forced to try
to fit with a high-slope Pomeranchuk trajectory which
tends to generate too much shrinkage and does not fit
differential cross sections well. In 7rp scattering, Berger
and Fox were able to get a reasonable fit with a high-
slope Pomeranchon. This is shown in Fig. 10.14.
DifFiculties arise for E+p elastic sca, ttering. There is
too much shrinkage and (do/dh) (E p) —(do/dt) (E+p)
is not well reproduced. This is shown in Fig. 10.j.5 for
a Pomeranchon slope of u~'=0. 85.

In conclusion, it is not possible to fit meson —baryon
elastic scattering data in detail with a simple sum of
Veneziano terms. Furthermore, even if one is allowed
the freedom of employing arbitrary- numbers of such
terms, a really satisfactory fit has not been obtained.
This is probably due to the presence of contributions
from J-plane cuts which are not included in narrow
resonance models.

Xone added i' proof: The reader may find it interest-
ing, in connection with four-point narrow resonance
phenomenology, to examine the recent work of Odorico
(1971a). He suggests that the data for Ep elastic
and charge exchange scatterings shows dips in the
amplitudes, which appear in a pat tern of roughl~

(1) Energy dependence and absolute magnitude of
cross sections, perhaps of several processes related
by crossing;

(2) Center of mass angular distributions of individua, l

particles;
(3) Invariant mass distributions for two or more

particles, including amounts of resonance production;
(4) Decay correlations of the dominant (low-lying)

resonances.

whatever successes one obtains here must be weighed
against the following problems:

(1) Unitarity inust be approximately imposed. This
is usually done by making the trajectory functions
complex, as in (10.5), and introducing a few parameters
for each trajectory. These parameters can in principle
be determined from sources independent of the particu-
lar processes being studied.

(2) One must select the narrow resonance iV-point
functions most likely to be important from the numerous
(12 for iV=5) nonequivalent amplitudes corresponding
to different orderings of the external lines.

(3) Those amplitudes whose orderings of external
lines give rise to exotic resonances are arbitrarily
excluded.

(4) Particular Regge trajectories, out of all those
allowed by the quantum numbers of the reactions under
consideration, are marked as important and included
in the phenomenological amplitude.

(5) The determination of the rela, tive strengths and
phases of the few amplitudes that are retained is
generally arbitrary, although there may be some
evidence that can guide the choices. A posteriori
justification is provided by successes and/or failures,
but little or no exploration has been made of the
sensitivity of the fits to variations in the relative
strengths of difIerent amplitudes.

(6) Some plausible arssats must be made in order to
simulate effects of baryon spin. The assumptions put in
here have influence on the low-mass regions of invariant
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. 10.14. Classical Regge Pole its to s p el ic adst/dt d0ata by Berger and Fox (1969) sbowing ellect oi using tugb-slope ponmran-
c on. The total (P+P'+p+p') contribution is the plain solid line. Contribution of the pomeranchon alone is the solid line with x's.
The P' contribution is given at the lowest energy in order to show how its residue zero moves as n~' is altered Data from Co@n et a
(1967) and Foley et al. (1963, 1965). More details can be found in Berger and Fox (1969).
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FIG. 10.15. Data for E~p elastic scattering, taken from Foley
et al. (1963), Orear et at. (1968), and Aachen —Berlin —CERN—
Imperial College —Vienna collaboration (1967) .

mass distributions and also on momentum transfer
distributions at small t.

In comparing the two lists above, the reader will

notice that some assumptions included in the problem
list more or less directly determine the experimental
feature one is trying to describe. For example, it has
been known for some time that K*(890) production
with no transfer of charge in the 3 channel is dominated
by natural parity exchanges (Gottfried and Jackson,
1964; Jackson, 1964) . Therefore, if one attempts a, B.
description of E~ production and if one assumes that
the dominant exchange is that of a vector meson
trajectory, the "predicted" and observed E~ decay
correlations are bound to agree. Similarly, if the
imaginary part of a meson or baryon trajectory has
been chosen to fit the width of the lowest-lying reso-
nance, the shape of that particular resonance in the
invariant mass distributions will be in reasonable
accord with the data.

In other words, evaluation of the significance of fits
with multiparticle dual amplitudes necessitates careful
study to find those features intrinsic to the model, and
not just properties which would emerge from any
model that includes the dominant resonances and the
peripheral nature of Regge pole exchange. In this
connection it would be interesting to compare a narrow
resonance fit with a crude coherent phenomenological
fit using Breit-signer forms.

An example of an attempt to fit several reactions with
three-body final states, using 85 functions, is the work
of Chan, Raitio, Thomas, and Tornqvist (1970).
They study the three processes: (A) K+p—+K'tr+p,

(B) K p~'-Eo~ P, -and (C) ~ P~-K'K P, -all of which
are related by crossing. The comparison of the Chan
et a/. phenomenological forms with data is essentially
in four parts: (1) energy dependence of total cross
sections; (2) angular distributions; (3) mass spectra;
(4) momentum transfer distributions (in parallel with
our list of possible predictions above). Using the same
narl ow resonance formula and one free parameter,
Chan et al. attempt to describe the above features of

(A) —(C) over an energy range of 2.5-13 GeV. As we

shall see, the presence of the problems listed above
makes it difficult to identify any features of the data
which are intrinsic to the narrow resonance model.

Let us begin with the predictions of the high-energy
behavior of total cross sections.

At high energies, say pL,b)4 BeV, the model is
const;ructed to be doubly peripheral. Once vector meson
exchange is input, as it is by Chan et at. , the amplitude
will Reggeize with the vector meson trajectory domi-

nating and the high-energy dependence will be correct.
At low energies, the predictions badly undershoot the
data, foi. (A) and (B), and the shape, though not the
normalization, agrees for (C). At low energies one
expects kinematic factors due to spin and phase space
to become important. The phase space factor will be
especially significant for the heavy final state in (C),
while spin factors are expected to play an important
role in (A) and (B). According to Berger (1969d), if
one extrapolates to low energies, phenomenological
four-point fits at high energies, using the asymptotic
form of the kinematic spin factors, one badly under-
shoots the data, just as here. Since the phase space
factor is expected to domina, te at low energies in (C),
the shape agreement there is not surprising.

Chan et at. further achieve a rough agreement
(within a factor of 2) for the relative normaliza, tions
of (A) —(C). This agreement can be understood using
relatively simple arguments contained in, but more basic
than, the 8; approach.

The total cross sections for (A) and (B) versus (C)
involve a factor of 1/20. A crude argument yielding
an order of magnitude e8ect of this kind is as follows:

Suppose (A) a,nd (B) proceed via Kp —+K"p and
K*~Etr, while (C) proceeds via trp —+/fop and /I t &KK. —
Then we crudely expect rye/rye to be proportional to
I'(/1&~KK)/I'(A2~rrp) 1/10, since the reactions are
otherwise similar. In the work under consideration
vector exchange dominates, a total A2 width of 90 MeV
is input, and presumably one is correctly taking account
of angular momentum barrier and phase space effects,
so that A2~EE will be properly suppressed with

respect to E*~Em..
9 ith respect to the mass spectra, as we have men-

tioned above, generally the prominent resonance on
each relevant trajectory is treated correctly. On the
other hand, the second resonance on each leading
trajectory is not well predicted. In fact, if one examines
the many plots of mass spectra given by Chan et al. ,
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one discovers that the secondary structure of the
theoretical curves does not match that of the data, to
the extent that there are several unobserved resonances
in the theoretical curves which necessitate special
discussion. In making the 6ts, we should also point out
that each of the six relevant trajectories (&v —A2, E*,
iV„A, A. , Fi*) is made complex as in item (1) of our
list of problems above. Each trajectory is parameterized
with 6ve constants, making a total of 30 parameters
roughly fitted with the known masses and widths. In
these circumstances there is a subtle question which
needs to be asked as to whether or not the parameters
are really being fixed independently of the data.

Kith respect to the angular distribution comparisons,
we have the following comments. In the reactions (A)
and (B), the predicted angular distribution for K*+
production are quite reasonable as are the 6+ + dis-
tributions in (A). However, this has nothing to do with
the details of the narrow resonance model, but in fact
follows from the Gottfried —Jackson theorem (Gottfried
and Jackson, 1964), which gives precisely these dis-
tributions for vector meson and 6 production through
vector meson exchange. LThe Jackson and Treirnan-
Yang distributions are sin' 0 and 1—cos 2q, respec-
tively. As in item (6) of the problem list above, the
external baryons are considered to be spinless here.
Otherwise the statement about 6 production would
be incorrect. ]

An interesting discrepa, ncy appears in the Ja,ckson
angle distributions in K** production in (A). Though
the forward distribution roughly fits data, there is a
disagreement at backward angles which becomes
progressively worse at higher energies. The agreement
at forward angles is due to an input choice of construc-
tive interference between the 6 and E**bands in the
Dalitz plot. The disagreement at backward angles is a
real failure of the model, but it is dificult to pin down
the cause without detailed analysis. The simplest
possibility would be that one is seeing the unobserved
1 state in the E~*(1420) tower. However, there are
complicated coherent interference effects and reAections
across the Dalitz plot, as one would expect with the
simultaneous presence of degenerate resonance towers
in several channels, so a definitive statement on this
point cannot be made.

Last, we come to the (distributions in momentum

transfer squared, t. As noted explicitly by Chan et at. ,
neglect of the external nucleon spin eliminates from
consideration any possible non-spin-Qip amplitude.
Such an amplitude would make a nonzero contribution
at t =0, where the spin-Rip amplitude vanishes. The
t distributions given by Chan et cl. agree with data for
large t, but there are discrepancies at small t which
probably arise from a non-spin-R. ip contribution. The
magnitude of this contribution remains an open ques-
tion, and shouM be further studied. ' To close this
section, we would like to make some brief general
remarks about some further aspects of the five point
problem.

First of all, we de6ne varia, bles as in Fig. 10.16 for
the process AB—+123, all particles being scalars.
Experimentally (Bartsch et al. , 1968; Oh and Walker,
1969), it is observed that one can parameterize the
doubly differential cross-section for AB +1+X, Ã—

being a collection of S hadrons, by

d'o/ds~dt =A (s~) exp f b(s~)
~

—'—to ~] (10.18)

near ~= to and for small s~, where s~ =p~', '= (pz —pi) ',
and to is the forward limit of t Empi.rically, b(s&) has
little or no resonance structure and is a monotonically
decreasing function, while A(s~) shows the effect of
resonances.

In the five-point case, Jones and Wyld (1969a)
have made the interesting observation that even if the
subenergy, s2~, is small, the 8ardakci —Ruegg function
B' yields, for large s=(p~+p~)', a, smooth and
monotonically decreasing b(s23). As shown by the
following argument, due to Berger (1969a, d), this
follows from the multiperipheral nature of the sum over
Feynman tree graphs from which 85 is constructed.
For s large with respect to the inverse of the universal
slope, B5 takes the limit (Bialas and Pokorski, 1969)

B -"'"p(— (~ ))BL ( ), (~ ) j
X,piL —~(~&), —~(s2,);—n(t2) —n(s~s);si3/sj, (10 19)

where s23 and t; are fixed, sI~ is large, and 8 is the
ordinary beta function. The 6rst two factors in this
expression yield the usual exponential forward peak in

t~, while the beta function does the same for the dis-
tribution in t2. The hypergeometric function is slowly
varying over the kinematic region of interest and
essentially plays no role. This means that 85 approxi-
mately factors into the form fi(ti) f2(t2), with the f;
dropping exponentially with increasing argument.
Using a straightforward phase space argument (Berger,
1969a, d), it can then be shown that the resultant
doubly differential cross section has the required
behavior (10.18).

Jones and Wyld (1969b) have also examined the

FIG. 10.t6. Kinematics for. .tive-point amplitude.

One of us (J.Y.) would like to thank E. L. Berger for an
extensive and informative discussion of his work, which resulted
in the remarks above. We would also like to thank V. Walach for
many helpful discussions and access to his data.
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problem of fitting the pn —+3m data using functions of
the 8& type, ra, ther than the 84's of I.ovelace, Berger,
and Altarelli and Rubinstein, discussed above.
N eglecting the nucleon spins, '4 they find that no
reasonable fit to the data is possible if one inserts the
measured parameters of the p and f. The experimental
fits (Anninos et al , 19.68; Foster et al. , 1968) lead one
to believe the data cannot be fitted with real p and f
parameters unless some complicated interference
occurs. The function 85 is complicated but evidently
not in the correct manner.

Additional material concerning narrow resonance
phenomenology can be found in Bose and Gupta
(1969), Capella et al,. (1969), Gunion and Yesian
(1969), Gutay et al. (1969), Pinsky (1969), Roberts
(1969), and Moen and Moffat (1970).

XI. CONCLUSION

Work on narrow resonance models can conveniently
be split into three stages: the breakin four-point stage,
the dog 6ght E-point stage, and the breakout or
unitarization stage. "

At the four-point and E-point stages, the model is,
even though physically inapplicable, rather simple and
beautifu1. The 3~-point amplitudes can be characterized
as functions having the singularity structure of Feynman
tree graphs and possessing multi-Regge limits. Evi-
dently, provided we also assume asymptotic exponential
fall-off when subenergies in which resonances are absent
are held 6xed, there are general uniqueness statements
which can be made. "The general properties of E-point
functions which are forced to have tree graph singularity
structure and multi-Regge behavior have not been fully
elucidated and deserve further investigation.

The following questions regarding four-point func-
tions also seem to us to merit further study:

(a) Can uniqueness, in the vr7r problem, be rigorously
related to the positivity of resonance widths?

(b) Is it possible to find a general, simple, way to
parametrize four-point amplitudes in a narrow reso-
nance manner, for processes with arbitrary external
spins, even if one requires the elimination of exotic
trajectories?

(c) Beginning with a particular 7nr amplitude and
making all internal poles scattering states, and vice
versa, can one find a closed selfconsistent set of four-
point amplitudes?

(d) Is it possible to prove rigorously that nonlinear
narrow resonance mass formulas necessarily do not
lead to fu11 Regge behavior?

"I'ield Marshal Montgomery, Earl of Alamein, E/ Alamein
to the River San~ro (Hutchinson, London, 1956), pp. 13, 16 ff.
One of us (J.Y.) vvould like to thank Professor Y. ice'eman for
suggesting this analogy ~vith desert ~varfare.' In this connection see Khuri (1969) and also the recent ~vork
of Tiktopoulos (1970).

(e) In a narrow resonance model for baryons, is it
possible to escape parity doubling? (Carlitz and
Kislinger, 1970) .

As we discussed above in Sec. VII for the S-point
functions so far invented, it is possible to force fac-
torization, provided one is willing to accept degeneracy
of satellite trajectories. The minimal such degeneracy
seems to be that of the statistical model of Hagedorn
(1968), and necessarily seems to involve ghosts, which
can be associated, via the harmonic oscillator operator
formalism (Fubini, Gordon, and Veneziano, 1969)
with the appearance of an indefinite metric.

The role of internal symmetry in the E-point narrow
resonance model is so far ill understood. In Sec. VII we
have discussed straightforward attempts to combine
the narrow resonance model with the quark model,
assuming that amplitudes can be separately factorized
into orbital, spin, and internal symmetry parts. This
seems unsatisfactory and it would be interesting to
know if the narrow resonance model really forces
amplitudes to have this artificial decomposition, which
results in ghosts, parity doubling, and extra unobserved
trajectories, all associated with the spin piece of the
factorization.

With respect to the narrow resonance lV-point func-
tions, the following questions seem to us of interest:

(a) Can one find a narrow resonance X-point boot-
strap consistent with the Goldstone realization of
SU(2) SU(2), with nz =0 and mp&m?"

(b) In wha. t sense is the X-point model unique?
(c) Can one find a solution to the inside —outside

four-point question (c) above, valid for X-point
functions?

(d) Is there some general rule which tells us how
zeros of narrow resonance amplitudes behave, as
unitarity is implemented?

Though narrow resonance amplitudes are con-
ceptually extremely useful, there are general problems
with using them phenomenologically. These model
amplitudes have linear trajectories with a universal
slope, in agreement with the empirical result that
known Regge trajectories appear to be approximately
linear with slopes of around 0.9—1.0 ( GeV) '. However,
the satellite trajectories in the model do not correspond,
in even a rough way, to anything anyone has so far
observed. Furthermore, if one attempts to force a
narrow resonance parameterization, say, to fit data for
meson —nucleon scattering, the resulting expressions
become prohibitively complicated, no less so than the
final expressions in classical Regge pole fits. In fact,

"See for example the ~vork of Kernan and Shepard (1969) on
~-p~~+z-.
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since a narrow resonance parameterization is the
extreme case of a pure moving Regge pole model, the
difficulties associated with such classical Regge fits
are made even more evident in this context. This is in
accord with recent suggestions (see especially I'ox,
1969) that cuts in the J-plane are present and empiri-
cally significant.

If one is less ambitious, there are several interesting
features of narrow resonance models that can be
separately compared against experiment.

The first of these is the general question of the validity
of local duality, which would imply, along a direction
in the Mandelstam plane corresponding to an exotic
channel, an oscillation of the amplitude, due to the
cancellation of exchange degenerate trajectories in
other channels. '4 There is as yet no definitive test.

Secondly, E-point functions can be represented as a
sum over Feynman tree graphs and they therefore
acquire a multi-Regge asymptotic behavior with a
nontrivial dependence on the Toiler angle, arising from
the structure of the model Reggeon-Reggeon-resonance
vertex. So far this dependence has not been checked
experimentally; it would be interesting to do so.

Thirdly, several models beside the narrow resonance
model predict the existence of secondary trajectories,
and to test for these one must devise a way of per-
forming detailed partial wave analyses at medium
energies in order to find out whether or not known
resonances contain several resonating components of
different spins.

Fourthly, in the narrow resonance model, trajectories
electively become linea, r in mass rather than (mass)'
as one goes to higher energies, and it would be very
interesting to see whether or where linear (mass)'-spin
relations break down experimentally.

Lastly, there is an interesting test of one basic
feature of the narrow resonance model that actually
works. If the inverse slope of Regge trajectories, b ',
is actually a universal scale parameter as in the model,
one would expect that the observed slope of diffraction
peaks in mX and XN high-energy charge exchange
scattering could be roughly computed by keeping only
the leading Regge trajectory. This turns out to be true
(Shapiro and Yellin, 1970 remark C) . In fact, this is a
specialization of the general observation of Veneziano
(1968) that both narrow resonance amplitudes and
data fall exponentially for fixed cos e (Orear, 1964) .

From the point of view of the authors, the breakout
stage has not occurred as yet. Thus far, attempts to
unitarize have gone in two directions: ad hoc modifica-
tion of the original formulas, and utilization of the
factorization properties of the E-point functions to
generate a perturbation series with iterative unitarity,
of course including closed loops.

'4 We thank G. F. Chew for emphasizing the importance of
this point to us.

The ad hot. rnodifications seem doomed to failure
precisely because they are ad hoc, and the physical
complications involved in constructing unitary ampli-
tudes due to the nonlinear nature of the unitarity
equations and the infinity of inelastic channels which
couple through unitarity seem to us to require a more
physical and systematic approach.

It is hard to visualize how the perturbation approach
will cure the unphysical pathologies of the original
X-point narrow resonance amplitudes, unless each
iteration produces very large corrections. After renor-
malization, the satellite trajectories must plunge into
distant regions of the complex-J plane while leaving the
leading trajectories with reasonable properties. The
necessity for large corrections at each stage of the
iteration procedure creates a danger that the procedure
will not be stable and will not converge to a well-
defined answer. Because of the nature of the problem,
the perturbation series approach is going to be in-
vestigated no matter how remote the possibility of
success. We therefore prefer to maintain an attitude of
contemplative but extreme skepticism. We would like,
however, to emphasize in this connection that the
following three questions require answers: (a) Are
cross-sections positive in each iterative order?" (b) Is
there any qualitative argument which would lead one to
believe that the leading and satellite trajectories behave
as suggested above? (c) In what sense and at what
iterative order will duality be broken?

The basis of our skepticism vis-0-vis the iterative
approach is that, at least in the planar graph case,
duality is being preserved at each stage of the iterative
procedure in the graphical sense of Fig. 9.3. Since
exact duality seems to be in convict with experiment,
one might suppose that the breakout stage will be
associated with a physical principle which tells us how
duality is broken and at the same time generates Regge
cuts, Pomeranchon effects, and exotic resonances.

One of us (Yellin, 1969d) has recently suggested a
way to interpret the narrow resonance scheme which is
essentially orthogonal to that of the iterators and which
includes a duality-breaking mechanism. In this ap-
proach, one supposes that the hadrons are built out of
quarks interacting through the exchange of an equally
fictitious harmonic oscillator quantum, the oscillon.
(This type of interaction is chosen in order to have
infinitely rising trajectories in the narrow resonance
limit. ) The narrow resonance model then consists of
amplitudes in which quarks interact in a relativistic
"potential, " with closed quark loops being forbidden,
and the narrow resonance poles are to be treated as
bound states. In this approach, it is evident that what-

"' It is not known whether the various ghosts in the iterative
approach lead to negative cross sections in every iterative order.
Some problems in this connection have been discussed by Lee
and Wick (1968) and Lee (1969).
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ever the 0th order amplitude may be, it is not, a Born
term, containing as it does all orders in the quark-
quark —oscillon coupling. Furthermore, if one generates
bound states by summing all crossed ladders in the
oscillon model, there is no reason to expect that all
couplings of the resultant bound states to each other
will factorize without the introduction of additional
degeneracies.

If one takes the QED analogy somewhat seriously,
the last point couM conceivably be checked. One is
instructed to take the 2X-point function for E electrons
and E positrons, with only multiphoton exchange, and
make all couplings of positron bound states to each
other factorize. While the complete theory, including
closed loops, will factorize perfectly, one would suspect
that in this truncated version it is inappropriate to
attempt to factorize, and the result of forcing fac-
torization will, at the minimum, lead to a large but
finite degeneracy, just as in the narrow resonance
bootstrap.

There is a natural way of introducing duality break-
ing into such a scheme. We merely start adding in
diagrams with closed quark loops, which, according to
conventional wisdom (Mandelstam, 1963a, b, c), bring
in asymptotic behavior typical of cut structure in the
J plane. Though this picture is helpful in guiding one s
mind towards a workable alternative to the iterative
approach, it has the failing that rules for computing
anything do not yet exist.

We conclude with the followin~"

The whole process is a lie
unless,

crowned by excess,
it break forcefully,

one way or another,
from its conhnement—

We will it so
and so it is

past all accident.
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